Abstract Net community production (NCP) was estimated from nitrate profiles measured via biogeochemical Argo floats drifting in the Argentine Basin. Two criteria were tested for defining hydrographic fronts used to separate the study area into five zones: potential density anomaly at 450 m and potential temperature at 100 m. The latter definition was preferred as it minimized overlapping among zones. Float profiles within each zone were used to construct monthly median profiles of nitrate. Monthly nitrate inventories were calculated for each zone by integrating the median profiles between the surface and a depth of 100 or 200 m. Three methods were utilized to estimate NCP from the nitrate drawdown. The resulting mean NCP estimates indicated a decline in NCP from 3 to 4 mol C m−2 yr−1south of ∼40°S to ≤1 mol C m−2 yr−1north of ∼40°S. The monthly median profiles suggested 20%–100% of drawdown occurred by the end of December; however, chlorophyll fluorescence indicated phytoplankton activity persisted through austral summer. We speculate that primary production during these summer months was supported by regenerated nitrogen sources (not nitrate), despite replete concentrations, likely due to the relative scarcity of bioavailable iron known to persist in the region. While a northward advective flux of nitrate was strongly suggested by meridional nitrate gradients over the upper 0–300 m, vertical mixing was apparently necessary to stimulate new production, indicating both processes are important for NCP in the Argentine Basin. This work highlights the potential for floats in studying biogeochemical cycles in hydrographically complex regions.
more »
« less
Seasonality of Dissolved Organic Carbon in the Upper Northeast Pacific Ocean
Abstract From seasonal cruises in the NE Pacific Ocean during 2017, we (1) determined dissolved organic carbon concentrations; (2) calculated net community production (NCP) from nitrate drawdown; and (3) established relationships between NCP and seasonal dissolved organic carbon (DOC) accumulation in the upper 75 m. The fraction of NCP that accumulated as DOC, hereafter referred to as the net dissolved production ratio, was calculated for several stations during spring and summer. The net dissolved production ratio was about 0.26 at the oceanic station Ocean Station Papa during different seasons and years. Using nitrate concentration profiles obtained from Bio‐Argo floats during 2009–2018 operating near Ocean Station Papa, we calculated NCP at high temporal resolution and then applied the 0.26 constant in order to (4) estimate DOC variability for the 9‐year period. We found strong seasonality near Ocean Station Papa, with NCP maxima during summers ranging from 0.3 to 2.9 mol C/m2and surface DOC concentrations estimated from 56 μmol/kg in winters to 73 μmol/kg in summers. There was a 10‐fold interannual variability in the seasonally accumulated inventory of DOC, ranging from 0.078 to 0.75 mol C/m2. This study reinforces the value of deploying floats equipped with chemical sensors in order to better understand marine biogeochemical cycles, especially when high resolution data cannot be obtained otherwise. Given that ~26% of NCP accumulates as DOC in the central Gulf of Alaska, the remaining balance of ~74% is available for export as sinking biogenic particles.
more »
« less
- Award ID(s):
- 1634009
- PAR ID:
- 10374612
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Global Biogeochemical Cycles
- Volume:
- 33
- Issue:
- 5
- ISSN:
- 0886-6236
- Page Range / eLocation ID:
- p. 526-539
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Carbon export out of the surface ocean via the biological pump is a critical sink for atmospheric carbon dioxide. This process transports organic carbon to the deep ocean through sinking particulate organic carbon (POC) and the downward transport of suspended POC and dissolved organic carbon (DOC). Changes in the relative contribution of each pathway can significantly affect the magnitude and efficiency of carbon export to depth. Net community production (NCP), an analog of carbon export under steady state assumptions, is typically estimated using budgets of biologically important chemical tracers in the upper ocean constrained by ship‐board or autonomous platform observations. In this study, we use measurements from biogeochemical profiling floats, the Ocean Station Papa mooring, and recently developed algorithms for carbonate system parameters to constrain budgets for three tracers (nitrate, dissolved inorganic carbon, and total alkalinity) and estimate NCP in the Northeast Pacific from 2009 to 2017. Using our multiple‐tracer approach, and constraining end‐member nutrient ratios of the POC and DOC produced, we not only calculate regional NCP throughout the annual cycle and across multiple depth horizons, but also partition this quantity into particulate and dissolved portions. We also use a particle backscatter‐based approach to estimate POC attenuation with depth and present a new method to constrain particle export across deeper horizons and estimate in situ export efficiency. Our results agree well with previously published estimates of regional carbon export annually and suggest that the approaches presented here could be used to assess the magnitude and efficiency of carbon export in other regions of the world's oceans.more » « less
-
Abstract Marine net community production (NCP), a metric of ecosystem functionality, is often estimated as the residual term in a mass balance equation that aims to describe upper ocean variations in the time series of a chemical tracer. The advent of biogeochemical (BGC) Argo profiling floats equipped with nitrate, pH, and oxygen sensors has enabled such NCP estimation across vast ocean regions. Floats typically drift at 1,000 m depth between profiling from ∼2,000 m to the surface every 10 days, resulting in quasi‐Lagrangian time series that can reflect different upper ocean water masses over time. However, limited information about real‐time horizontal tracer gradients often leads to lateral processes being omitted during tracer budget closure, which can bias the residual‐term NCP estimates. To determine the potential magnitude of such biases, we developed a method to quantify and adjust for the impact of lateral float movement across horizontal tracer gradients using dissolved inorganic carbon (DIC) as our case study. We evaluated the method by extracting artificial float profiles from a depth‐resolved observation‐based DIC product to generate an artificial DIC time series. We then estimated NCP before and after accounting for horizontal gradient effects and compared the results to NCP estimates from an artificial DIC time series extracted at a fixed location along the float trajectory. Testing 10 biogeographical domains with moderate to substantial horizontal DIC gradients, our method significantly improved the precision (by ∼50 to ∼80%) and accuracy (by ∼10 to ∼100%) of regional NCP estimates. This method can be applied to other tracers with multi‐month‐long residence times.more » « less
-
Abstract The subpolar North Atlantic plays an outsized role in the atmosphere‐to‐ocean carbon sink. The central Irminger Sea is home to well‐documented deep winter convection and high phytoplankton production, which drive strong seasonal and interannual variability in regional carbon cycling. We use observational data from moored carbonate chemistry system sensors and annual turn‐around cruise samples at the Ocean Observatories Initiative's Irminger Sea Array to construct a near‐continuous time series of mixed layer total dissolved inorganic carbon (DIC),pCO2, and total alkalinity from summer 2015 to summer 2022. We use these carbonate chemistry system time series to deconvolve the physical and biological drivers of surface ocean carbon cycling in this region on seasonal, annual, and interannual time scales. We find high annual net community production within the seasonally varying mixed layer, averaging 9.8 ± 1.6 mol m−2 yr−1with high interannual variability (range of 6.0–13.9 mol m−2 yr−1). The highest daily net community production rates occur during the late winter and early spring, prior to the observed high chlorophyll concentrations associated with the spring phytoplankton bloom. As a result, the winter and early spring play a much larger role in biological carbon export from the mixed layer than traditionally thought.more » « less
-
null (Ed.)The oceans teem with heterotrophic bacterioplankton that play an appreciable role in the uptake of dissolved organic carbon (DOC) derived from phytoplankton net primary production (NPP). As such, bacterioplankton carbon demand (BCD), or gross heterotrophic production, represents a major carbon pathway that influences the seasonal accumulation of DOC in the surface ocean and, subsequently, the potential vertical or horizontal export of seasonally accumulated DOC. Here, we examine the contributions of bacterioplankton and DOM to ecological and biogeochemical carbon flow pathways, including those of the microbial loop and the biological carbon pump, in the Western North Atlantic Ocean (∼39–54°N along ∼40°W) over a composite annual phytoplankton bloom cycle. Combining field observations with data collected from corresponding DOC remineralization experiments, we estimate the efficiency at which bacterioplankton utilize DOC, demonstrate seasonality in the fraction of NPP that supports BCD, and provide evidence for shifts in the bioavailability and persistence of the seasonally accumulated DOC. Our results indicate that while the portion of DOC flux through bacterioplankton relative to NPP increased as seasons transitioned from high to low productivity, there was a fraction of the DOM production that accumulated and persisted. This persistent DOM is potentially an important pool of organic carbon available for export to the deep ocean via convective mixing, thus representing an important export term of the biological carbon pump.more » « less
An official website of the United States government
