skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Net Community Production in the Argentine Basin Estimated From Nitrate Drawdown Using Biogeochemical Argo Floats
Abstract Net community production (NCP) was estimated from nitrate profiles measured via biogeochemical Argo floats drifting in the Argentine Basin. Two criteria were tested for defining hydrographic fronts used to separate the study area into five zones: potential density anomaly at 450 m and potential temperature at 100 m. The latter definition was preferred as it minimized overlapping among zones. Float profiles within each zone were used to construct monthly median profiles of nitrate. Monthly nitrate inventories were calculated for each zone by integrating the median profiles between the surface and a depth of 100 or 200 m. Three methods were utilized to estimate NCP from the nitrate drawdown. The resulting mean NCP estimates indicated a decline in NCP from 3 to 4 mol C m−2 yr−1south of ∼40°S to ≤1 mol C m−2 yr−1north of ∼40°S. The monthly median profiles suggested 20%–100% of drawdown occurred by the end of December; however, chlorophyll fluorescence indicated phytoplankton activity persisted through austral summer. We speculate that primary production during these summer months was supported by regenerated nitrogen sources (not nitrate), despite replete concentrations, likely due to the relative scarcity of bioavailable iron known to persist in the region. While a northward advective flux of nitrate was strongly suggested by meridional nitrate gradients over the upper 0–300 m, vertical mixing was apparently necessary to stimulate new production, indicating both processes are important for NCP in the Argentine Basin. This work highlights the potential for floats in studying biogeochemical cycles in hydrographically complex regions.  more » « less
Award ID(s):
2110258 1946578 1936222
PAR ID:
10488440
Author(s) / Creator(s):
;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
128
Issue:
8
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract From seasonal cruises in the NE Pacific Ocean during 2017, we (1) determined dissolved organic carbon concentrations; (2) calculated net community production (NCP) from nitrate drawdown; and (3) established relationships between NCP and seasonal dissolved organic carbon (DOC) accumulation in the upper 75 m. The fraction of NCP that accumulated as DOC, hereafter referred to as the net dissolved production ratio, was calculated for several stations during spring and summer. The net dissolved production ratio was about 0.26 at the oceanic station Ocean Station Papa during different seasons and years. Using nitrate concentration profiles obtained from Bio‐Argo floats during 2009–2018 operating near Ocean Station Papa, we calculated NCP at high temporal resolution and then applied the 0.26 constant in order to (4) estimate DOC variability for the 9‐year period. We found strong seasonality near Ocean Station Papa, with NCP maxima during summers ranging from 0.3 to 2.9 mol C/m2and surface DOC concentrations estimated from 56 μmol/kg in winters to 73 μmol/kg in summers. There was a 10‐fold interannual variability in the seasonally accumulated inventory of DOC, ranging from 0.078 to 0.75 mol C/m2. This study reinforces the value of deploying floats equipped with chemical sensors in order to better understand marine biogeochemical cycles, especially when high resolution data cannot be obtained otherwise. Given that ~26% of NCP accumulates as DOC in the central Gulf of Alaska, the remaining balance of ~74% is available for export as sinking biogenic particles. 
    more » « less
  2. Abstract For the first time the annual carbon budget on the West Antarctic Peninsula shelf was studied with continuously measured CO2system parameters (pH andpCO2) from a subsurface mooring. The temporal evolution of the mixed layer dissolved inorganic carbon (DIC) is investigated via a mass balance. The annual mixed layer DIC inventory change was 1.1 ± 0.4 mol m−2 yr−1, which was mainly regulated by biological drawdown (−2.8 ± 2.4 mol m−2 yr−1), diapycnal eddy diffusion (2.6 ± 1.3 mol m−2 yr−1), entrainment/detrainment (0.9 ± 0.4 mol m−2 yr−1), and air‐water gas exchange (0.4 ± 2.1 mol m−2 yr−1). Significant carbon drawdown was observed in the spring and summer, which was replenished by the physical processes mentioned above. These observations suggest this area is an annual atmosphere CO2sink with a mixed layer net community production of 2.8 ± 2.4 mol m−2 yr−1. These results highlight the significant seasonality in the DIC mass balance and the necessity of year‐round continuous observations for robust assessments of biogeochemical cycling in this region. 
    more » « less
  3. Abstract Marine net community production (NCP), a metric of ecosystem functionality, is often estimated as the residual term in a mass balance equation that aims to describe upper ocean variations in the time series of a chemical tracer. The advent of biogeochemical (BGC) Argo profiling floats equipped with nitrate, pH, and oxygen sensors has enabled such NCP estimation across vast ocean regions. Floats typically drift at 1,000 m depth between profiling from ∼2,000 m to the surface every 10 days, resulting in quasi‐Lagrangian time series that can reflect different upper ocean water masses over time. However, limited information about real‐time horizontal tracer gradients often leads to lateral processes being omitted during tracer budget closure, which can bias the residual‐term NCP estimates. To determine the potential magnitude of such biases, we developed a method to quantify and adjust for the impact of lateral float movement across horizontal tracer gradients using dissolved inorganic carbon (DIC) as our case study. We evaluated the method by extracting artificial float profiles from a depth‐resolved observation‐based DIC product to generate an artificial DIC time series. We then estimated NCP before and after accounting for horizontal gradient effects and compared the results to NCP estimates from an artificial DIC time series extracted at a fixed location along the float trajectory. Testing 10 biogeographical domains with moderate to substantial horizontal DIC gradients, our method significantly improved the precision (by ∼50 to ∼80%) and accuracy (by ∼10 to ∼100%) of regional NCP estimates. This method can be applied to other tracers with multi‐month‐long residence times. 
    more » « less
  4. Abstract This study characterized ocean biological carbon pump metrics in the second iteration of the REgional Carbon Cycle Assessment and Processes (RECCAP2) project. The analysis here focused on comparisons of global and biome‐scale regional patterns in particulate organic carbon (POC) production and sinking flux from the RECCAP2 ocean biogeochemical model ensemble against observational products derived from satellite remote sensing, sediment traps, and geochemical methods. There was generally good model‐data agreement in mean large‐scale spatial patterns, but with substantial spread across the model ensemble and observational products. The global‐integrated, model ensemble‐mean export production, taken as the sinking POC flux at 100 m (6.08 ± 1.17 Pg C yr−1), and export ratio defined as sinking flux divided by net primary production (0.154 ± 0.026) both fell at the lower end of observational estimates. Comparison with observational constraints also suggested that the model ensemble may have underestimated regional biological CO2drawdown and air‐sea CO2flux in high productivity regions. Reasonable model‐data agreement was found for global‐integrated, ensemble‐mean sinking POC flux into the deep ocean at 1,000 m (0.65 ± 0.24 Pg C yr−1) and the transfer efficiency defined as flux at 1,000 m divided by flux at 100 m (0.122 ± 0.041), with both variables exhibiting considerable regional variability. The RECCAP2 analysis presents standard ocean biological carbon pump metrics for assessing biogeochemical model skill, metrics that are crucial for further modeling efforts to resolve remaining uncertainties involving system‐level interactions between ocean physics and biogeochemistry. 
    more » « less
  5. Abstract Measurements of pH and nitrate from the Southern Ocean Carbon and Climate Observations and Modeling array of profiling floats were used to assess the ratios of dissolved inorganic carbon (DIC) and nitrate (NO3) uptake during the spring to summer bloom period throughout the Southern Ocean. Two hundred and forty‐three bloom periods were observed by 115 floats from 30°S to 70°S. Similar calculations were made using the Takahashi surface DIC and nitrate climatology. To separate the effects of atmospheric CO2exchange and mixing from phytoplankton uptake, the ratios of changes in DIC to nitrate of surface waters (ΔDIC/ΔNO3) were computed in the Biogeochemical Southern Ocean State Estimate (B‐SOSE) model. Phytoplankton uptake of DIC and nitrate are fixed in B‐SOSE at the Redfield Ratio (RR; 6.6 mol C/mol N). Deviations in the B‐SOSE ΔDIC/ΔNO3must be due to non‐biological effects of CO2gas exchange and mixing. ΔDIC/ΔNO3values observed by floats and in the Takahashi climatology were corrected for the non‐biological effects using B‐SOSE. The corrected, in situ biological uptake ratio (C:N) occurs at values similar to the RR, with two major exceptions. North of 40°S biological DIC uptake is observed with little or no change in nitrate giving high C:N. In the latitude band at 55°S, the Takahashi data give a low C:N value, while floats are high. This may be due to a change in CO2air‐sea exchange in this region from uptake during the Takahashi reference year of 2005 to outgassing of CO2during the years sampled by floats. 
    more » « less