skip to main content


This content will become publicly available on August 1, 2024

Title: Net Community Production in the Argentine Basin Estimated From Nitrate Drawdown Using Biogeochemical Argo Floats
Abstract

Net community production (NCP) was estimated from nitrate profiles measured via biogeochemical Argo floats drifting in the Argentine Basin. Two criteria were tested for defining hydrographic fronts used to separate the study area into five zones: potential density anomaly at 450 m and potential temperature at 100 m. The latter definition was preferred as it minimized overlapping among zones. Float profiles within each zone were used to construct monthly median profiles of nitrate. Monthly nitrate inventories were calculated for each zone by integrating the median profiles between the surface and a depth of 100 or 200 m. Three methods were utilized to estimate NCP from the nitrate drawdown. The resulting mean NCP estimates indicated a decline in NCP from 3 to 4 mol C m−2 yr−1south of ∼40°S to ≤1 mol C m−2 yr−1north of ∼40°S. The monthly median profiles suggested 20%–100% of drawdown occurred by the end of December; however, chlorophyll fluorescence indicated phytoplankton activity persisted through austral summer. We speculate that primary production during these summer months was supported by regenerated nitrogen sources (not nitrate), despite replete concentrations, likely due to the relative scarcity of bioavailable iron known to persist in the region. While a northward advective flux of nitrate was strongly suggested by meridional nitrate gradients over the upper 0–300 m, vertical mixing was apparently necessary to stimulate new production, indicating both processes are important for NCP in the Argentine Basin. This work highlights the potential for floats in studying biogeochemical cycles in hydrographically complex regions.

 
more » « less
Award ID(s):
2110258 1946578
NSF-PAR ID:
10488440
Author(s) / Creator(s):
;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
128
Issue:
8
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    From seasonal cruises in the NE Pacific Ocean during 2017, we (1) determined dissolved organic carbon concentrations; (2) calculated net community production (NCP) from nitrate drawdown; and (3) established relationships between NCP and seasonal dissolved organic carbon (DOC) accumulation in the upper 75 m. The fraction of NCP that accumulated as DOC, hereafter referred to as the net dissolved production ratio, was calculated for several stations during spring and summer. The net dissolved production ratio was about 0.26 at the oceanic station Ocean Station Papa during different seasons and years. Using nitrate concentration profiles obtained from Bio‐Argo floats during 2009–2018 operating near Ocean Station Papa, we calculated NCP at high temporal resolution and then applied the 0.26 constant in order to (4) estimate DOC variability for the 9‐year period. We found strong seasonality near Ocean Station Papa, with NCP maxima during summers ranging from 0.3 to 2.9 mol C/m2and surface DOC concentrations estimated from 56 μmol/kg in winters to 73 μmol/kg in summers. There was a 10‐fold interannual variability in the seasonally accumulated inventory of DOC, ranging from 0.078 to 0.75 mol C/m2. This study reinforces the value of deploying floats equipped with chemical sensors in order to better understand marine biogeochemical cycles, especially when high resolution data cannot be obtained otherwise. Given that ~26% of NCP accumulates as DOC in the central Gulf of Alaska, the remaining balance of ~74% is available for export as sinking biogenic particles.

     
    more » « less
  2. We use observations from novel biogeochemical profiling floats deployed by the Southern Ocean Carbon and Climate Observations and Modeling program to estimate annual net community production (ANCP; associated with carbon export) from the seasonal drawdown of mesopelagic oxygen and surface nitrate in the Southern Ocean. Our estimates agree with previous observations in showing an increase in ANCP in the vicinity of the polar front (∼3 mol C m−2 y−1), compared to lower rates in the subtropical zone (≤ 1 mol C m−2 y−1) and the seasonal ice zone (<2 mol C m−2 y−1). Paradoxically, the increase in ANCP south of the subtropical front is associated with elevated surface nitrate and silicate concentrations, but decreasing surface iron. We hypothesize that iron limitation promotes silicification in diatoms, which is evidenced by the low silicate to nitrate ratio of surface waters around the Antarctic polar front. High diatom silicification increases the ballasting effect of particulate organic carbon and overall ANCP in this region. A model‐based assessment of our methods shows a good agreement between ANCP estimates based on oxygen and nitrate drawdown and the modeled downward organic carbon flux at 100 m. This agreement supports the presumption that net biological consumption is the dominant process affecting the drawdown of these chemical tracers and that, given sufficient data, ANCP can be inferred from observations of oxygen and/or nitrate drawdown in the Southern Ocean.

     
    more » « less
  3. Abstract

    For the first time the annual carbon budget on the West Antarctic Peninsula shelf was studied with continuously measured CO2system parameters (pH andpCO2) from a subsurface mooring. The temporal evolution of the mixed layer dissolved inorganic carbon (DIC) is investigated via a mass balance. The annual mixed layer DIC inventory change was 1.1 ± 0.4 mol m−2 yr−1, which was mainly regulated by biological drawdown (−2.8 ± 2.4 mol m−2 yr−1), diapycnal eddy diffusion (2.6 ± 1.3 mol m−2 yr−1), entrainment/detrainment (0.9 ± 0.4 mol m−2 yr−1), and air‐water gas exchange (0.4 ± 2.1 mol m−2 yr−1). Significant carbon drawdown was observed in the spring and summer, which was replenished by the physical processes mentioned above. These observations suggest this area is an annual atmosphere CO2sink with a mixed layer net community production of 2.8 ± 2.4 mol m−2 yr−1. These results highlight the significant seasonality in the DIC mass balance and the necessity of year‐round continuous observations for robust assessments of biogeochemical cycling in this region.

     
    more » « less
  4. Abstract

    We investigated methane oxidation in the oxygen minimum zone (OMZ) of the eastern tropical North Pacific (ETNP) off central Mexico. Methane concentrations in the anoxic core of the OMZ reached ~ 20 nmol L−1at off shelf sites and 34 nmol L−1at a shelf site. Rates of methane oxidation were determined in ship‐board incubations with3H‐labeled methane at O2concentrations 0–75 nmol L−1. In vertical profiles at off‐shelf stations, highest rates were found between the secondary nitrite maximum at ~ 130 m and the methane maximum at 300–400 m in the anoxic core. Methane oxidation was inhibited by addition of 1μmol L−1oxygen, which, together with the depth distribution, indicated an anaerobic pathway. A coupling to nitrite reduction was further indicated by the inhibitory effect of the nitric oxide scavenger 2‐phenyl‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (PTIO). Metatranscriptomes from the anoxic OMZ core supported the likely involvement of nitrite‐reducing bacteria of the NC10 clade in anaerobic methane oxidation, but also indicated a potential role for nitrate‐reducing euryarchaeotal methane oxidizers (ANME‐2d). Gammaproteobacteria of the Methanococcales were further detected in both 16S rRNA gene amplicons and metatranscriptomes, but the role of these presumed obligately aerobic methane oxidizers in the anoxic OMZ core is unclear. Given available estimates of water residence time, the measured rates and rate constants (up to ~ 1 yr−1) imply that anaerobic methane oxidation is a substantial methane sink in the ETNP OMZ and hence attenuates the emission of methane from this and possibly other OMZs.

     
    more » « less
  5. Abstract

    The Chukchi Sea is an increasing CO2sink driven by rapid climate changes. Understanding the seasonal variation of air‐sea CO2exchange and the underlying mechanisms of biogeochemical dynamics is important for predicting impacts of climate change on and feedbacks by the ocean. Here, we present a unique data set of underway sea surface partial pressure of CO2(pCO2) and discrete samples of biogeochemical properties collected in five consecutive cruises in 2014 and examine the seasonal variations in air‐sea CO2flux and net community production (NCP). We found that thermal and non‐thermal effects have different impacts on sea surfacepCO2and thus the air‐sea CO2flux in different water masses. The Bering summer water combined with meltwater has a significantly greater atmospheric CO2uptake potential than that of the Alaskan Coastal Water in the southern Chukchi Sea in summer, due to stronger biological CO2removal and a weaker thermal effect. By analyzing the seasonal drawdown of dissolved inorganic carbon (DIC) and nutrients, we found that DIC‐based NCP was higher than nitrate‐based NCP by 66%–84% and attributable to partially decoupled C and N uptake because of a variable phytoplankton stoichiometry. A box model with a non‐Redfield C:N uptake ratio can adequately reproduce observedpCO2and DIC, which reveals that, during the intensive growing season (late spring to early summer), 30%–46% CO2uptake in the Chukchi Sea was supported by a flexible stoichiometry of phytoplankton. These findings have important ramification for forecasting the responses of CO2uptake of the Chukchi ecosystem to climate change.

     
    more » « less