skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Green‐Light‐Driven Reductive Elimination of Chlorine from a Carbene‐Xanthylium Gold(III) Complex
Abstract With the discovery of late transition metal platforms that support clean photoreductive halogen eliminations, we now describe an indazol‐3‐ylidene gold trichloride complex ([7]+) decorated at the 4‐position by a xanthylium unit. This orange complex features a low energy band in the visible part of the spectrum, assigned to the charge transfer excitation of the indazol‐3‐ylidene/xanthylium donor/acceptor dyad. Green‐light irradiation of this complex in the presence of a chlorine trap elicits the clean photoelimination of chlorine radicals, producing the corresponding gold(I) complex. This visible‐light‐induced photoreduction is very efficient, reaching quantum yields close to 10 %. A neutral analog of [7]+featuring an anthryl group rather than a xanthylium unit proved to be perfectly photostable, supporting the importance of the xanthylium‐based photoredox unit present in [7]+ more » « less
Award ID(s):
2154972
PAR ID:
10374642
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
61
Issue:
31
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Reaction of (P)AuOTf [P=P(t‐Bu)2o‐biphenyl] with indenyl‐ or 3‐methylindenyl lithium led to isolation of gold η1‐indenyl complexes (P)Au(η1‐inden‐1‐yl) (1 a) and (P)Au(η1‐3‐methylinden‐1‐yl) (1 b), respectively, in >65 % yield. Whereas complex1 bis static, complex1 aundergoes facile, degenerate 1,3‐migration of gold about the indenyl ligand (ΔG153K=9.1±1.1 kcal/mol). Treatment of complexes1 aand1 bwith (P)AuNTf2led to formation of the corresponding cationic bis(gold) indenyl complexestrans‐[(P)Au]211‐inden‐1,3‐yl) (2 a) andtrans‐[(P)Au]212‐3‐methylinden‐1‐yl) (2 b), respectively, which were characterized spectroscopically and modeled computationally. Despite the absence of aurophilic stabilization in complexes2 aand2 b, the binding affinity of mono(gold) complex1 atoward exogenous (P)Au+exceed that of free indene by ~350‐fold and similarly the binding affinity of1 btoward exogenous (P)Au+exceed that of 3‐methylindene by ~50‐fold. The energy barrier for protodeauration of bis(gold) indenyl complex2 awith HOAc was ≥8 kcal/mol higher than for protodeauration of mono(gold) complex1 a. 
    more » « less
  2. Abstract Visible‐light capture activates a thermodynamically inert CoIII−CF3bond for direct C−H trifluoromethylation of arenes and heteroarenes. New trifluoromethylcobalt(III) complexes supported by a redox‐active [OCO] pincer ligand were prepared. Coordinating solvents, such as MeCN, afford green, quasi‐octahedral [(SOCO)CoIII(CF3)(MeCN)2] (2), but in non‐coordinating solvents the complex is red, square pyramidal [(SOCO)CoIII(CF3)(MeCN)] (3). Both are thermally stable, and2is stable in light. But exposure of3to low‐energy light results in facile homolysis of the CoIII−CF3bond, releasing.CF3radical, which is efficiently trapped by TEMPO.or (hetero)arenes. The homolytic aromatic substitution reactions do not require a sacrificial or substrate‐derived oxidant because the CoIIby‐product of CoIII−CF3homolysis produces H2. The photophysical properties of2and3provide a rationale for the disparate light stability. 
    more » « less
  3. ABSTRACT Triplet arylnitrenes may provide direct access to aryl azo‐dimers, which have broad commercial applicability. Herein, the photolysis ofp‐azidostilbene (1) in argon‐saturated methanol yielded stilbene azo‐dimer (2) through the dimerization of tripletp‐nitrenostilbene (31N). The formation of31Nwas verified by electron paramagnetic resonance spectroscopy and absorption spectroscopy (λmax ~ 375 nm) in cryogenic 2‐methyltetrahydrofuran matrices. At ambient temperature, laser flash photolysis of1in methanol formed31N(λmax ~ 370 nm, 2.85 × 107 s−1). On shorter timescales, a transient absorption (λmax ~ 390 nm) that decayed with a similar rate constant (3.11 × 107 s−1) was assigned to a triplet excited state (T) of1. Density functional theory calculations yielded three configurations for T of1, with the unpaired electrons on the azido (TA) or stilbene moiety (TTw, twisted and TFl, flat). The transient was assigned to TTwbased on its calculated spectrum. CASPT2 calculations gave a singlet–triplet energy gap of 16.6 kcal mol−1for1 N; thus, intersystem crossing of11Nto31Nis unlikely at ambient temperature, supporting the formation of31Nfrom T of1. Thus, sustainable synthetic methods for aryl azo‐dimers can be developed using the visible‐light irradiation of aryl azides to form triplet arylnitrenes. 
    more » « less
  4. Abstract Catalysis ofO‐atom transfer (OAT) reactions is a characteristic of both natural (enzymatic) and synthetic molybdenum‐oxo and ‐peroxo complexes. These reactions can employ a variety of terminal oxidants, e. g. DMSO,N‐oxides, and peroxides, etc., but rarely molecular oxygen. Here we demonstrate the ability of a set of Schiff‐base‐MoO2complexes (cy‐salen)MoO2(cy‐salen=N,N’‐cyclohexyl‐1,2‐bis‐salicylimine) to catalyze the aerobic oxidation of PPh3. We also report the results of a DFT computational investigation of the catalytic pathway, including the identification of energetically accessible intermediates and transition states, for the aerobic oxidation of PMe3. Starting from the dioxo species, (cy‐salen)Mo(VI)O2(1), key reaction steps include: 1) associative addition of PMe3to an oxo‐O to give LMo(IV)(O)(OPMe3) (2); 2) OPMe3dissociation from2to produce mono‐oxo complex (cy‐salen)Mo(IV)O (3); 3) stepwise O2association with3via superoxo species (cy‐salen)Mo(V)(O)(η1‐O2) (4) to form the oxo‐peroxo intermediate (cy‐salen)Mo(VI)(O)(η2‐O2) (5); 4) theO‐transfer reaction of PMe3with oxo‐peroxo species5at the oxo‐group, rather than the peroxo unit leading, after OPMe3dissociation, to a monoperoxo species, (cy‐salen)Mo(IV)(η2‐O2) (7); and 5) regeneration of the dioxo complex (cy‐salen)Mo(VI)O2(1) from the monoperoxo triplet37or singlet17by a concerted, asynchronous electronic isomerization. An alternative pathway for recycling of the oxo‐peroxo species5to the dioxo‐Mo1via a bimetallic peroxo complex LMo(O)‐O−O‐Mo(O)L8is determined to be energetically viable, but is unlikely to be competitive with the primary pathway for aerobic phosphine oxidation catalyzed by1. 
    more » « less
  5. A 9,9-dimethylxanthene-based ligand substituted at the 4- and 5-positions by a phosphine and a xanthylium unit, respectively, has been prepared and converted into an AuCl complex, the structure of which reveals an intramolecular Au–Cl⋯π + interaction. This new ligand platform was also found to support the formation of an unprecedented hydroxytrifluoroborate derivative featuring a “hard/soft” mismatched Au– μ (OH)–BF 3 motif. Despite its surprising stability, this gold hydroxytrifluoroborate complex is a remarkably potent carbophilic catalyst which readily activates alkynes, without activator. 
    more » « less