skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cationic Bis(Gold) Indenyl Complexes
Abstract Reaction of (P)AuOTf [P=P(t‐Bu)2o‐biphenyl] with indenyl‐ or 3‐methylindenyl lithium led to isolation of gold η1‐indenyl complexes (P)Au(η1‐inden‐1‐yl) (1 a) and (P)Au(η1‐3‐methylinden‐1‐yl) (1 b), respectively, in >65 % yield. Whereas complex1 bis static, complex1 aundergoes facile, degenerate 1,3‐migration of gold about the indenyl ligand (ΔG153K=9.1±1.1 kcal/mol). Treatment of complexes1 aand1 bwith (P)AuNTf2led to formation of the corresponding cationic bis(gold) indenyl complexestrans‐[(P)Au]211‐inden‐1,3‐yl) (2 a) andtrans‐[(P)Au]212‐3‐methylinden‐1‐yl) (2 b), respectively, which were characterized spectroscopically and modeled computationally. Despite the absence of aurophilic stabilization in complexes2 aand2 b, the binding affinity of mono(gold) complex1 atoward exogenous (P)Au+exceed that of free indene by ~350‐fold and similarly the binding affinity of1 btoward exogenous (P)Au+exceed that of 3‐methylindene by ~50‐fold. The energy barrier for protodeauration of bis(gold) indenyl complex2 awith HOAc was ≥8 kcal/mol higher than for protodeauration of mono(gold) complex1 a.  more » « less
Award ID(s):
2102653
PAR ID:
10490516
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemPlusChem
Volume:
89
Issue:
6
ISSN:
2192-6506
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The bonding in beryllocene, [BeCp2], took decades to establish, owing to its unexpected mixed hapticity structure (i.e., [Be(η5‐Cp)(η1‐Cp)]). Beryllium complexes containing the indenyl ligand, which is a close relative of the cyclopentadienyl anion, but which is also known to exhibit its own bonding peculiarities (e.g., facile η5⇄ η3shifts), have remained unknown. Standard metathetical approaches to their synthesis (e.g., with K[Ind′] + BeX2in an ether solvent) give rise to intractable oils from which nothing identifiable can be isolated. In contrast, mechanochemical preparation, involving the solvent‐free grinding of BeBr2and potassium indenides, leads to the production of discrete (indenyl)beryllium complexes, including [Be(C9H7)2] (1) and [Be{1,3‐(SiMe3)2C9H5}Br] (2). The former displays η51‐coordinated ligands in the solid state, but DFT calculations indicate that an η55‐conformation is less than 5 kcal mol−1higher in energy. 
    more » « less
  2. Abstract A new series of mono‐ and bis‐alkynyl CoIII(TIM) complexes (TIM=2,3,9,10‐tetramethyl‐1,4,8,11‐tetraazacyclotetradeca‐1,3,8,10‐tetraene) is reported herein. Thetrans‐[Co(TIM)(C2R)Cl]+complexes were prepared from the reaction betweentrans‐[Co(TIM)Cl2]PF6and HC2R (R=tri(isopropyl)silyl or TIPS (1), ‐C6H4‐4‐tBu (2), ‐C6H4‐4‐NO2(3 a), andN‐mesityl‐1,8‐naphthalimide or NAPMes(4 a)) in the presence of Et3N. The intermediate complexes of the typetrans‐[Co(TIM)(C2R)(NCMe)](PF6)(OTf),3 band4 b, were obtained by treating3 aand4 a, respectively, with AgOTf in CH3CN. Furthermore, bis‐alkynyltrans‐[Co(TIM)(C2R)2]PF6complexes,3 cand4 c, were generated following a second dehydrohalogenation reaction between3 band4 b, respectively, and the appropriate HC2R in the presence of Et3N. These new complexes have been characterized using X‐ray diffraction (2,3 a,4 a, and4 c), IR,1H NMR, UV/Vis spectroscopy, fluorescent spectroscopy (4 c), and cyclic voltammetry. 
    more » « less
  3. Abstract Catalysis ofO‐atom transfer (OAT) reactions is a characteristic of both natural (enzymatic) and synthetic molybdenum‐oxo and ‐peroxo complexes. These reactions can employ a variety of terminal oxidants, e. g. DMSO,N‐oxides, and peroxides, etc., but rarely molecular oxygen. Here we demonstrate the ability of a set of Schiff‐base‐MoO2complexes (cy‐salen)MoO2(cy‐salen=N,N’‐cyclohexyl‐1,2‐bis‐salicylimine) to catalyze the aerobic oxidation of PPh3. We also report the results of a DFT computational investigation of the catalytic pathway, including the identification of energetically accessible intermediates and transition states, for the aerobic oxidation of PMe3. Starting from the dioxo species, (cy‐salen)Mo(VI)O2(1), key reaction steps include: 1) associative addition of PMe3to an oxo‐O to give LMo(IV)(O)(OPMe3) (2); 2) OPMe3dissociation from2to produce mono‐oxo complex (cy‐salen)Mo(IV)O (3); 3) stepwise O2association with3via superoxo species (cy‐salen)Mo(V)(O)(η1‐O2) (4) to form the oxo‐peroxo intermediate (cy‐salen)Mo(VI)(O)(η2‐O2) (5); 4) theO‐transfer reaction of PMe3with oxo‐peroxo species5at the oxo‐group, rather than the peroxo unit leading, after OPMe3dissociation, to a monoperoxo species, (cy‐salen)Mo(IV)(η2‐O2) (7); and 5) regeneration of the dioxo complex (cy‐salen)Mo(VI)O2(1) from the monoperoxo triplet37or singlet17by a concerted, asynchronous electronic isomerization. An alternative pathway for recycling of the oxo‐peroxo species5to the dioxo‐Mo1via a bimetallic peroxo complex LMo(O)‐O−O‐Mo(O)L8is determined to be energetically viable, but is unlikely to be competitive with the primary pathway for aerobic phosphine oxidation catalyzed by1. 
    more » « less
  4. Abstract Mono‐ andbis‐decylated lumazines have been synthesized and characterized. Namely,mono‐decyl chain [1‐decylpteridine‐2,4(1,3H)‐dione]6aandbis‐decyl chain [1,3‐didecylpteridine‐2,4(1,3H)‐dione]7aconjugates were synthesized by nucleophilic substitution (SN2) reactions of lumazine with 1‐iododecane inN,N‐dimethylformamide (DMF) solvent. Decyl chain coupling occurred at theN1site and then theN3site in a sequential manner, without DMF condensation. Molecular orbital (MO) calculations show ap‐orbital atN1but notN3, which along with a nucleophilicity parameter (N) analysis predict alkylation atN1in lumazine. Only after the alkylation atN1in6a, does ap‐orbital onN3emerge thereby reacting with a second equivalent of 1‐iododecane to reach the dialkylated product7a. Data from NMR (1H,13C, HSQC, HMBC), HPLC, TLC, UV‐vis, fluorescence and density functional theory (DFT) provide evidence for the existence ofmono‐decyl chain6aandbis‐decyl chain7a. These results differ to pterinO‐alkylations (kinetic control), whereN‐alkylation of lumazine is preferred and then to dialkylation (thermodynamic control), with an avoidance of DMF solvent condensation. These findings add to the list of alkylation strategies for increasing sensitizer lipophilicity for use in photodynamic therapy. 
    more » « less
  5. Abstract Methoxide abstraction from gold acetylide complexes of the form (L)Au[η1‐C≡CC(OMe)ArAr′] (L=IPr, P(tBu)2(ortho‐biphenyl); Ar/Ar′=C6H4X where X=H, Cl, Me, OMe) with trimethylsilyl trifluoromethanesulfonate (TMSOTf) at −78 °C resulted in the formation of the corresponding cationic gold diarylallenylidene complexes [(L)Au=C=C=CArAr′]+ OTfin ≥85±5 % yield according to1H NMR analysis.13C NMR and IR spectroscopic analysis of these complexes established the arene‐dependent delocalization of positive charge on both the C1 and C3 allenylidene carbon atoms. The diphenylallenylidene complex [(IPr)Au=C=C=CPh2]+ OTfreacted with heteroatom nucleophiles at the allenylidene C1 and/or C3 carbon atom. 
    more » « less