skip to main content

Title: Substorm Current Wedge: Energy Conversion and Current Diversion

Using a magnetohydrodynamic simulation of magnetotail reconnection, flow bursts, and dipolarization, we further investigate the current diversion and energy flow and conversion associated with the substorm current wedge (SCW) or smaller‐scale wedgelets. Current diversion into both Region 1 (R1) and Region 2 (R2) sense systems is found to happen inside (that is, closer to the center of the flow burst) and equatorward of the R1 and R2 type field‐aligned currents. In contrast to earlier investigations the current diversion takes place in dipolarized fields extending all the way toward the equatorial plane. An additional FAC system with the signature of Region 0 (R0) (same sense as R2) is found at higher latitudes in taillike fields. The diversion into this system takes place in layers equatorward of the R0 currents but outside the equatorial plane. Whereas the diversion into R1 and R2 systems is pressure gradient dominated, the diversion into the R0 system is inertia dominated and may persist only during flow burst activity. While azimuthally diverging flows near the dipole contribute to the buildup of R1 and R2 systems, converging flows at larger distance contribute to the buildup of R0 and R1 systems. In contrast to the current diversion regions inside the current wedge, generator regions are found on the outside of the wedge, similar to earlier results. Within the tail domain covered, these regions are overpowered by load regions, such that additional generator regions must be expected closer to Earth, not covered by the present simulation.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The present study investigates dipolarization signatures in the inner magnetosphere using sharp geosynchronous dipolarizations as a reference. The results are summarized as follows: (1) The region of sharp and structured dipolarizations expands earthward while dipolarizations are sustained at geosynchronous orbit; (2) within 5REfrom Earth, dipolarization signatures are often smooth and gradual, resembling midlatitude positive bays, and they start simultaneously with substorm onsets; (3) off the equator (>0.5RE), sharp dipolarizations often take place before geosynchronous dipolarizations. These results can be explained by a model current system with R1‐sense and R2‐sense current wedges (R1CW and R2CW) if (a) the R1CW, which is located outside, is more intense than the R2CW in total current, (b) the R1CW stays outside of geosynchronous orbit, and (c) the R2CW moves earthward. The model suggests that the region of sharp dipolarizations is confined between the two current wedges, and it expands earthward as the R2CW moves earthward (Result 1). Sufficiently earthward of the R2CW, the remote effect of the R1CW dominates that of the R2CW, and accordingly, magnetic disturbances resemble midlatitude positive bays (Result 2). Since the timing of sharp dipolarizations is determined by the passage of the R2CW, they take place earlier for outer flux tubes. Away from the magnetic equator, sharp dipolarizations can precede geosynchronous dipolarizations especially if the magnetic configuration is stretched (Result 3). Thus, this double‐current wedge model explains the variability of dipolarization signatures at different distances, and it may be regarded as a generalized substorm current wedge model.

    more » « less
  2. null (Ed.)
    Abstract. The high-latitude atmosphere is a dynamic region with processes that respond to forcing from the Sun, magnetosphere, neutral atmosphere, andionosphere. Historically, the dominance of magnetosphere–ionosphere interactions has motivated upper atmospheric studies to use magneticcoordinates when examining magnetosphere–ionosphere–thermosphere coupling processes. However, there are significant differences between thedominant interactions within the polar cap, auroral oval, and equatorward of the auroral oval. Organising data relative to these boundaries hasbeen shown to improve climatological and statistical studies, but the process of doing so is complicated by the shifting nature of the auroral ovaland the difficulty in measuring its poleward and equatorward boundaries. This study presents a new set of open–closed magnetic field line boundaries (OCBs) obtained from Active Magnetosphere and Planetary ElectrodynamicsResponse Experiment (AMPERE) magnetic perturbation data. AMPERE observations of field-aligned currents (FACs) are used to determine the location ofthe boundary between the Region 1 (R1) and Region 2 (R2) FAC systems. This current boundary is thought to typically lie a few degrees equatorwardof the OCB, making it a good candidate for obtaining OCB locations. The AMPERE R1–R2 boundaries are compared to the Defense MeteorologicalSatellite Program Special Sensor J (DMSP SSJ) electron energy flux boundaries to test this hypothesis and determine the best estimate of thesystematic offset between the R1–R2 boundary and the OCB as a function of magnetic local time. These calibrated boundaries, as well as OCBsobtained from the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) observations, are validated using simultaneous observations of theconvection reversal boundary measured by DMSP. The validation shows that the OCBs from IMAGE and AMPERE may be used together in statisticalstudies, providing the basis of a long-term data set that can be used to separate observations originating inside and outside of the polar cap. 
    more » « less
  3. Abstract

    Bursty bulk flows and dipolarizing flux bundles within them play an important role in the transport of mass, energy, and magnetic flux in the magnetotail. On the basis of an magnetohydrodynamic simulation of magnetotail reconnection and dipolarization, we investigate the contribution of individual bursts and flux transport events to the buildup of the substorm current wedge, as well as to the earthward transport of magnetic flux and energy. Individual events, defined by increased flow speed (flow bursts), increased cross‐tail electric field, or increased (or increasing) magnetic fieldBz, are found to be closely related but not identical. Multiple individual magnetic flux transport events collectively contribute to tailward and azimuthal expansion of dipolarization in the inner tail and to an increase of total field‐aligned currents toward or away from the ionosphere. In contrast, the current closure across midnight, estimated from the surface currents at the inner (earthward) boundary of the simulation box, was found to remain only a fraction (∼10% or 0.2 MA) of the total Region 1 current into to ionosphere. The simulation showed dipolarization everywhere earthward of the near‐Earth x‐line, amounting to ∼2.3 ×108 Wb, commensurate with substorm estimates. This can appear at a satellite in various ways, through either classical earthward transport and pileup (outward moving accumulation) or lateral (azimuthal) or tailward (vortical or recoiled) convective motion of dipolarized flux tubes, or a combination of these.

    more » « less
  4. Abstract

    We present examples of high‐latitude field‐aligned current (FAC) and toroidal magnetic potential patterns in both hemispheres reconstructed at a 2‐min cadence using an updated optimal interpolation (OI) method that ingests magnetic perturbation data provided by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) program. A solstice and an equinoctial event are studied to demonstrate the reconstructed patterns and to provide scientific insights into FAC response to different solar wind drivers. For the 14 June 2011 high‐speed stream event with mostly northwardBzdriving, we found persistently stronger FACs in the Northern Hemisphere. Extreme interhemispheric asymmetry is associated with the interplanetary magnetic field (IMF) direction and large dipole tilt, consistent with earlier studies. FAC asymmetries seen during an isolated substorm can be attributed to dipole tilt. During relatively low geomagnetic activity, the FAC response to IMFBxchanges is identified. For the 17–18 March 2013 period, we provide global snapshots of rapid FAC changes related to an interplanetary shock passage. We further present comparisons between instantaneous and mean behaviors of FAC for the solar wind sheath passage and interplanetary coronal mass ejection southwardBzinterval and northwardBzintervals. We show that (1) sheath passage results in strong FAC and high variation in the dayside polar cap region and pre‐midnight region, different from the typical R1/R2 currents during prolonged southwardBz; (2) four‐cell reverse patterns appear during northwardBzbut are not stable; and (3) persistent dawn‐dusk asymmetry is seen throughout the storm, especially during an extreme substorm, likely associated with a dawnside current wedge.

    more » « less
  5. Abstract

    The present study investigates the cause of a sharp horizontal (H) magnetic depression observed on the dayside during the 2003 Halloween storm, and discusses if the same process could cause the 1,600 nTHdepression observed at Colaba during the 1859 Carrington storm. For the HalloweenHdepression, it is found that (a) it developed in correlation with southward interplanetary magnetic field (IMF)BZin the sheath region of a coronal mass ejection; (b) its magnitude decreased significantly with decreasing magnetic latitude; (c) it was highly correlated with westward and eastward sub‐auroral zone magnetic deflections at earlier and later local times, respectively; and (d) the westward auroral electrojet (AEJ) enhanced simultaneously in the entire nightside auroral zone, whereas the enhancement of the dayside eastward AEJ was unclear. These features suggest that the dayside R1‐sense wedge current system, which was driven by dayside magnetic reconnection, was the cause of theHdepression, and the associated field‐aligned currents closed primarily with the westward AEJ through the nightside. The ColabaHdepression also took place on the dayside and lasted for ∼2 hr. Furthermore, it took place within a few hours after the storm commencement, and the westward AEJ enhanced simultaneously in the dawn sector. These similarities suggest that the dayside wedge current system was also the cause of this historical event. The sharp recovery of the ColabaHdepression, which has been a challenge to explain, may be attributed to the decay of this current system due to a northward IMF turning.

    more » « less