skip to main content

Title: Fluvio‐thermal erosion and thermal denudation in the yedoma region of northern Alaska: Revisiting the Itkillik River exposure

Riverbank erosion in yedoma regions strongly affects landscape evolution, biogeochemical cycling, sediment transport, and organic and nutrient fluxes to the Arctic Ocean. Since 2006, we have studied the 35‐m‐high Itkillik River yedoma bluff in northern Alaska, whose retreat rate during 1995–2010 was up to 19 m/yr, which is among the highest rates worldwide. This study extends our previous observations of bluff evolution and shows that average bluff‐top retreat rates decreased from 8.7–10.0 m/yr during 2011–2014 to 4.5–5.8 m/yr during 2015–2019, and bluff‐base retreat rates for the same time period decreased from 4.7–7.5 m/yr to 1.3–1.7 m/yr, correspondingly. Bluff evolution initially involves rapid fluvio‐thermal erosion at the base and block collapse, following by slowdown in river erosion and continuing thermal denudation of the retreating headwall with formation of baydzherakhs. Eventually, input of sediment and water from the headwall diminishes, vegetation develops, and slope gradually stabilizes. The step change in the fluvial–geomorphic system has resulted in a 60% decline in the volumetric mobilization of sediment and organic carbon between 2011 and 2019. Our findings stress the importance of sustained observations at key permafrost region study sites to elucidate critical information related to past and potential landscape evolution in the Arctic.

more » « less
Award ID(s):
1929170 1820883
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Permafrost and Periglacial Processes
Page Range / eLocation ID:
p. 277-298
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Coastal erosion in the Arctic has numerous internal and external environmental drivers. Internal drivers include sediment composition, permafrost properties and exposure which contribute to its spatial variability, while changing hydrometeorological conditions act as external drivers and determine the temporal evolution of shoreline retreat. To reveal the relative role of these factors, we investigated patterns of coastal dynamics in an enclosed bay in the southwestern Kara Sea, Russia, namely the Gulf of Kruzenstern, which is protected from open-sea waves by the Sharapovy Koshki Islands. Using multitemporal satellite imagery, we calculated decadal-scale retreat rates for erosional segments of the coastal plain from 1964 to 2019. In the field, we studied and described Quaternary sediments and massive ground-ice beds outcropping in the coastal bluffs. Using data from regional hydrometeorological stations and climate reanalysis (ERA), we estimated changes in the air thawing index, sea ice-free period duration, wind-wave energy and total hydrometeorological stress for the Gulf of Kruzenstern, and compared it to Kharasavey and Marre-Sale open-sea segments north and south of the gulf to understand how the hydrometeorological forcing changes in an enclosed bay. The calculated average shoreline retreat rates along the Gulf in 1964–2010 were 0.5 ± 0.2 m yr −1 ; the highest erosion of up to 1.7 ± 0.2 m yr −1 was typical for segments containing outcrops of massive ground-ice beds and facing to the northwest. These retreat rates, driven by intensive thermal denudation, are comparable to long-term rates measured along open-sea sites known from literature. As a result of recent air temperature and sea ice-free period increases, average erosion rates rose to 0.9 ± 0.7 m yr −1 in 2010–2019, with extremes of up to 2.4 ± 0.7 m yr −1 . The increased mean decadal-scale erosion rates were also associated with higher spatial variability in erosion patterns. Analysis of the air thawing index, wave energy potential and their total effect showed that inside the Gulf of Kruzenstern, 85% of coastal erosion is attributable to thermal denudation associated with the air thawing index, if we suppose that at open-sea locations, the input of wave energy and air thawing index is equal. Our findings highlight the importance of permafrost degradation and thermal denudation on increases in ice-rich permafrost bluff erosion in the Arctic. 
    more » « less
  2. Abstract Waterfalls are among the fastest-eroding parts of river networks, but predicting natural waterfall retreat rates is difficult due to multiple processes that can drive waterfall erosion. We lack data on how waterfall height influences the mechanism and rate of upstream waterfall retreat. We addressed this knowledge gap with experiments testing the influence of drop height on waterfall retreat. Our experiments showed that shorter waterfalls retreat up to five times faster than taller waterfalls, when bedrock strength, sediment supply, and water discharge are constant. This retreat rate difference is due to a change in the erosion mechanism. Short waterfalls retreat by the formation of several small, rapidly eroding bedrock steps (i.e., cyclic steps), whereas tall waterfalls tend to form large bedrock plunge pools where lateral plunge pool erosion allows headwall undercutting and subsequent waterfall retreat. Because waterfall height can be partially set by the waterfall formation mechanism, our results highlight that the rate of waterfall retreat and subsequent landscape evolution can be modulated by the processes that form waterfalls. 
    more » « less
  3. Two prominent arctic coastal erosion mechanisms affect the coastal bluffs along the North Slope of Alaska. These include the niche erosion/block collapse mechanism and the bluff face thaw/slump mechanism. The niche erosion/block collapse erosion mechanism is dominant where there are few coarse sediments in the coastal bluffs, the elevation of the beach below the bluff is low, and there is frequent contact between the sea and the base of the bluff. In contrast, the bluff face thaw/slump mechanism is dominant where significant amounts of coarse sediment are present, the elevation of the beach is high, and contact between the sea and the bluff is infrequent. We show that a single geologic parameter, coarse sediment areal density, is predictive of the dominant erosion mechanism and is somewhat predictive of coastal erosion rates. The coarse sediment areal density is the dry mass (g) of coarse sediment (sand and gravel) per horizontal area (cm 2 ) in the coastal bluff. It accounts for bluff height and the density of coarse material in the bluff. When the areal density exceeds 120 g cm −2 , the bluff face thaw/slump mechanism is dominant. When the areal density is below 80 g cm −2 , niche erosion/block collapse is dominant. Coarse sediment areal density also controls the coastal erosion rate to some extent. For the sites studied and using erosion rates for the 1980–2000 period, when the sediment areal density exceeds 120 g cm −2 , the average erosion rate is low or 0.34 ± 0.92 m/yr. For sediment areal density values less than 80 g cm −2 , the average erosion rate is higher or 2.1 ± 1.5 m/yr. 
    more » « less
  4. Recent excavation in the new CRREL Permafrost Tunnel in Fox, Alaska provides a unique opportunity to study properties of Yedoma — late Pleistocene ice- and organic-rich syngenetic permafrost. Yedoma has been described at numerous sites across Interior Alaska, mainly within the Yukon-Tanana upland. The most comprehensive data on the structure and properties of Yedoma in this area have been obtained in the CRREL Permafrost Tunnel near Fairbanks — one of the most accessible large-scale exposures of Yedoma permafrost on Earth, which became available to researchers in the mid-1960s. Expansion of the new ∼4-m-high and ∼4-m-wide linear excavations, started in 2011 and ongoing, exposes an additional 300 m of well-preserved Yedoma and provides access to sediments deposited over the past 40,000 years, which will allow us to quantify rates and patterns of formation of syngenetic permafrost, depositional history and biogeochemical characteristics of Yedoma, and its response to a warmer climate. In this paper, we present results of detailed cryostratigraphic studies in the Tunnel and adjacent area. Data from our study include ground-ice content, the stable water isotope composition of the variety of ground-ice bodies, and radiocarbon age dates. Based on cryostratigraphic mapping of the Tunnel and results of drilling above and inside the Tunnel, six main cryostratigraphic units have been distinguished: 1) active layer; 2) modern intermediate layer (ice-rich silt); 3) relatively ice-poor Yedoma silt reworked by thermal erosion and thermokarst during the Holocene; 4) ice-rich late Pleistocene Yedoma silt with large ice wedges; 5) relatively ice-poor fluvial gravel; and 6) ice-poor bedrock. Our studies reveal significant differences in cryostratigraphy of the new and old CRREL Permafrost Tunnel facilities. Original syngenetic permafrost in the new Tunnel has been better preserved and less affected by erosional events during the period of Yedoma formation, although numerous features (e.g., bodies of thermokarst-cave ice, thaw unconformities, buried gullies) indicate the original Yedoma silt in the recently excavated sections was also reworked to some extent by thermokarst and thermal erosion during the late Pleistocene and Holocene. 
    more » « less
  5. null (Ed.)
    Observational data of coastal change over much of the Arctic are limited largely due to its immensity, remoteness, harsh environment, and restricted periods of sunlight and ice-free conditions. Barter Island, Alaska, is one of the few locations where an extensive, observational dataset exists, which enables a detailed assessment of the trends and patterns of coastal change over decadal to annual time scales. Coastal bluff and shoreline positions were delineated from maps, aerial photographs, and satellite imagery acquired between 1947 and 2020, and at a nearly annual rate since 2004. Rates and patterns of shoreline and bluff change varied widely over the observational period. Shorelines showed a consistent trend of southerly erosion and westerly extension of the western termini of Barter Island and Bernard Spit, which has accelerated since at least 2000. The 3.2 km long stretch of ocean-exposed coastal permafrost bluffs retreated on average 114 m and at a maximum of 163 m at an average long-term rate (70 year) of 1.6 ± 0.1 m/yr. The long-term retreat rate was punctuated by individual years with retreat rates up to four times higher (6.6 ± 1.9 m/yr; 2012–2013) and both long-term (multidecadal) and short-term (annual to semiannual) rates showed a steady increase in retreat rates through time, with consistently high rates since 2015. A best-fit polynomial trend indicated acceleration in retreat rates that was independent of the large spatial and temporal variations observed on an annual basis. Rates and patterns of bluff retreat were correlated to incident wave energy and air and water temperatures. Wave energy was found to be the dominant driver of bluff retreat, followed by sea surface temperatures and warming air temperatures that are considered proxies for evaluating thermo-erosion and denudation. Normalized anomalies of cumulative wave energy, duration of open water, and air and sea temperature showed at least three distinct phases since 1979: a negative phase prior to 1987, a mixed phase between 1987 and the early to late 2000s, followed by a positive phase extending to 2020. The duration of the open-water season has tripled since 1979, increasing from approximately 40 to 140 days. Acceleration in retreat rates at Barter Island may be related to increases in both thermodenudation, associated with increasing air temperature, and the number of niche-forming and block-collapsing episodes associated with higher air and water temperature, more frequent storms, and longer ice-free conditions in the Beaufort Sea. 
    more » « less