skip to main content


This content will become publicly available on May 26, 2024

Title: Waterfall height sets the mechanism and rate of upstream retreat
Abstract Waterfalls are among the fastest-eroding parts of river networks, but predicting natural waterfall retreat rates is difficult due to multiple processes that can drive waterfall erosion. We lack data on how waterfall height influences the mechanism and rate of upstream waterfall retreat. We addressed this knowledge gap with experiments testing the influence of drop height on waterfall retreat. Our experiments showed that shorter waterfalls retreat up to five times faster than taller waterfalls, when bedrock strength, sediment supply, and water discharge are constant. This retreat rate difference is due to a change in the erosion mechanism. Short waterfalls retreat by the formation of several small, rapidly eroding bedrock steps (i.e., cyclic steps), whereas tall waterfalls tend to form large bedrock plunge pools where lateral plunge pool erosion allows headwall undercutting and subsequent waterfall retreat. Because waterfall height can be partially set by the waterfall formation mechanism, our results highlight that the rate of waterfall retreat and subsequent landscape evolution can be modulated by the processes that form waterfalls.  more » « less
Award ID(s):
1946342
NSF-PAR ID:
10428840
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Geology
Volume:
51
Issue:
7
ISSN:
0091-7613
Page Range / eLocation ID:
693 to 697
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    River profiles are shaped by climatic and tectonic history, lithology, and internal feedbacks between flow hydraulics, sediment transport and erosion. In steep channels, waterfalls may self‐form without changes in external forcing (i.e., autogenic formation) and erode at rates faster or slower than an equivalent channel without waterfalls. We use a 1‐D numerical model to investigate how self‐formed waterfalls alter the morphology of bedrock river longitudinal profiles. We modify the standard stream power model to include a slope threshold above which waterfalls spontaneously form and a rate constant allowing waterfalls to erode faster or slower than other fluvial processes. Using this model, we explore how waterfall formation alters both steady state and transient longitudinal profile forms. Our model predicts that fast waterfalls create km‐scale reaches in a dynamic equilibrium with channel slope held approximately constant at the threshold slope for waterfall formation, while slow waterfalls can create local channel slope maxima at the location of slow waterfall development. Furthermore, slow waterfall profiles integrate past base level histories, leading to multiple possible profile forms, even at steady‐state. Consistency between our model predictions and field observations of waterfall‐rich rivers in the Kings and Kaweah drainages in the southern Sierra Nevada, California, supports the hypothesis that waterfall formation can modulate river profiles in nature. Our findings may help identify how bedrock channels are influenced by waterfall erosion and aid in distinguishing between signatures of external and internal perturbations, thereby strengthening our ability to interpret past climate and tectonic changes from river longitudinal profiles.

     
    more » « less
  2. Abstract Waterfalls can form due to external perturbation of river base level, lithologic heterogeneity, and internal feedbacks (i.e., autogenic dynamics). While waterfalls formed by lithologic heterogeneity and external perturbation are well documented, there is a lack of criteria with which to identify autogenic waterfalls, thereby limiting the ability to assess the influence of autogenic waterfalls on landscape evolution. We propose that autogenic waterfalls evolve from bedrock bedforms known as cyclic steps and therefore form as a series of steps with spacing and height set primarily by channel slope. We identified 360 waterfalls split between a transient and steady-state portion of the San Gabriel Mountains in California, USA. Our results show that while waterfalls have different spatial distributions in the transient and steady-state landscapes, waterfalls in both landscapes tend to form at slopes >3%, coinciding with the onset of Froude supercritical flow, and the waterfall height to spacing ratio in both landscapes increases with slope, consistent with cyclic step theory and flume experiments. We suggest that in unglaciated mountain ranges with relatively uniform rock strength, individual waterfalls are predominately autogenic in origin, while the spatial distribution of waterfalls may be set by external perturbations. 
    more » « less
  3. Abstract

    Bedrock erosion and canyon formation during extreme floods have dramatically altered landscapes on Earth and Mars. Grand Coulee was carved by outburst floods from Pleistocene glacial Lake Missoula and is the largest canyon in the Channeled Scabland, a megaflood‐scoured landscape in the northwestern USA. Quantifying paleo‐discharge is required to understand how landscapes evolve in response to extreme events, but there are few constraints on the magnitude of the floods that incised Grand Coulee; hence, we used hydraulic modeling and geologic evidence to quantify paleo‐flood discharges during different phases of canyon incision. When upper Grand Coulee was incising by headward waterfall retreat, the paleo‐discharge was 2.6 × 106 m3s−1, which produced shear stresses great enough to cause the waterfall to retreat via toppling of basalt columns. The largest possible flood through upper Grand Coulee, a Missoula flood which raised glacial Lake Columbia to a stage of 750 m, produced a modeled discharge of 7.6 × 106 m3s−1. The discharges associated with waterfall retreat and drainage of glacial Lake Columbia are >80% and ∼50% lower, respectively, than the 14–17 × 106 m3s−1discharge predicted by assuming the present‐day topography was inundated to the elevation of high‐water marks. Due to bedrock incision, high‐water marks may overestimate paleo‐flow depth in canyons carved by floods, hence bedrock erosion should be considered when estimating paleo‐discharge in flood‐carved canyons. Our results indicate that outburst floods with discharges and flow depths much lower than those required to inundate high‐water marks are capable of carving deep canyons.

     
    more » « less
  4. Abstract

    A knickzone is defined as a waterfall or an oversteepened fluvial reach encompassing a series of waterfalls. Knickzones are remarkable landforms in that they may represent diametrically opposed conditions: either rapid upstream propagation of base‐level fall or a condition of stability and stalled response to base‐level fall. Knickzones on the Hawaiian islands exhibit evidence of both behaviours, and in this study, we explore whether this dichotomy can be explained by a threshold stream power for river incision. Topographic analysis shows that the transition between fluvial hanging valleys, where no measurable upstream retreat from the stream junction or coastline has occurred, and knickzones that have retreated or formed upstream of their outlet can be defined by a range of catchment sizes from ~0.5 to 6 km2. This transition is present on all volcanoes in our analysis regardless of significant base‐level fall, and there is no clear trend of drainage area above knickzones with volcano age. To explain these observations, we hypothesize that knickzones form or stabilize where maximum unit stream power () does not exceed the critical unit stream power required to incise bedrock . Using estimates of a maximum possible flood discharge as a function of drainage area to calculate , we show that drainage areas above knickzones are well described by the theoretical prediction that incision stalls when , where falls in a narrow range from 14 to 40 kW/m2. Furthermore, we demonstrate that knickzone positions are largely insensitive to mean climate conditions, likely reflecting the fact that extreme flood events are either insensitive or inversely correlated with mean annual rainfall.

     
    more » « less
  5. null (Ed.)
    Abstract. Estimation of erosion rate is an important component of landscapeevolution studies, particularly in settings where transience or spatialvariability in uplift or erosion generates diverse landform morphologies.While bedrock rivers are often used to constrain the timing and magnitude of changes in baselevel lowering, hilltop curvature (or convexity), CHT, provides an additional opportunity to map variations in erosion rate given that average slope angle becomes insensitive to erosion rate owing to threshold slope processes. CHT measurement techniques applied in prior studies (e.g., polynomial functions), however, tend to be computationallyexpensive when they rely on high-resolution topographic data such as lidar,limiting the spatial extent of hillslope geomorphic studies to small studyregions. Alternative techniques such as spectral tools like continuouswavelet transforms present an opportunity to rapidly document trends inhilltop convexity across expansive areas. Here, we demonstrate howcontinuous wavelet transforms (CWTs) can be used to calculate the Laplacianof elevation, which we utilize to estimate erosion rate in three catchmentsof the Oregon Coast Range that exhibit varying slope angle, slope length,and hilltop convexity, implying differential erosion. We observe thatCHT values calculated with the CWT are similar to those obtained from2D polynomial functions. Consistent with recent studies, we find thaterosion rates estimated with CHT from both CWTs and 2D polynomialfunctions are consistent with erosion rates constrained with cosmogenicradionuclides from stream sediments. Importantly, our CWT approachcalculates curvature at least 103 times more quickly than 2Dpolynomials. This efficiency advantage of the CWT increases with domainsize. As such, continuous wavelet transforms provide a compelling approachto rapidly quantify regional variations in erosion rate as well aslithology, structure, and hillslope sediment transport processes, which areencoded in hillslope morphology. Finally, we test the accuracy of CWT and 2Dpolynomial techniques by constructing a series of synthetic hillslopesgenerated by a theoretical nonlinear transport model that exhibit a range oferosion rates and topographic noise characteristics. Notably, we find thatneither CWTs nor 2D polynomials reproduce the theoretically prescribedCHT value for hillslopes experiencing moderate to fast erosion rates,even when no topographic noise is added. Rather, CHT is systematicallyunderestimated, producing a power law relationship between erosion rate andCHT that can be attributed to the increasing prominence of planarhillslopes that narrow the zone of hilltop convexity as erosion rateincreases. As such, we recommend careful consideration of measurement lengthscale when applying CHT to estimate erosion rate in moderate tofast-eroding landscapes, where curvature measurement techniques may be prone to systematic underestimation. 
    more » « less