Some thunderstorms in Cordoba, Argentina, present a charge structure with an enhanced low-level positive charge layer, and practically nonexistent upper-level positive charge. Storms with these characteristics are uncommon in the United States, even when considering regions with a high frequency of anomalous charge structure storms such as Colorado. In this study, we explored the microphysical and kinematic conditions inferred by radar that led to storms with this unique low-level anomalous charge structure in Argentina, and compared them to conditions conducive for anomalous and normal charge structures. As high liquid water contents in the mixed-phase layer lead to positive charging of graupel and anomalous storms through the non-inductive charging mechanism, we explored radar parameters hypothesized to be associated with large cloud supercooled liquid water contents in the mixed-phase layer and anomalous storms, such as mass and volume of hail and high-density graupel, large reflectivity associated with the growth of rimed precipitation to hail size, and parameters that are proxies for strong updrafts such as echo-top and Zdr column heights. We found that anomalous storms had higher values of mass and volume of hail in multiple sub-layers of the mixed-phase zone and higher frequency of high reflectivity values. Low-level anomalous events had higher hail mass in the lower portion of the mixed-phase zone when compared to normal events. Weaker updraft proxies were found for low-level anomalous events due to the shallow nature of these events while there was no distinction between the updraft proxies of normal and anomalous storms.
more »
« less
The Relation of Environmental Conditions With Charge Structure in Central Argentina Thunderstorms
Abstract In this study we explored the environmental conditions hypothesized to induce a dominant charge structure in thunderstorms in the province of Cordoba, Argentina, during the RELAMPAGO‐CACTI (Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations‐Clouds, Aerosols, Complex Terrain Interactions) field campaigns. Hypothesized environmental conditions are thought to be related to small warm cloud residence time and warm rain growth suppression, which lead to high cloud liquid water contents in the mixed‐phase zone, contributing to positive charging of graupel and anomalous charge structure storms. Data from radiosondes, a cloud condensation nuclei (CCN) ground‐based instrument and reanalysis were used to characterize the proximity inflow air of storms with anomalous and normal charge structures. Consistent with the initial hypothesis, anomalous storms had small warm cloud depth caused by dry low‐level humidity and low 0°C height. Anomalous storms were associated with lower CCN concentrations than normal storms, an opposite result to the initial expectation. High CAPE is not an important condition for the development of anomalous storms in Argentina, as no clear pattern could be found among the different parameters calculated for updraft proxy that would be consistent with the initial hypothesis.
more »
« less
- PAR ID:
- 10374729
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Earth and Space Science
- Volume:
- 9
- Issue:
- 5
- ISSN:
- 2333-5084
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A new automated method to retrieve charge layer polarity from flashes, named Chargepol, is presented in this paper. Using data from the NASA Lightning Mapping Array (LMA) deployed during the Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign in Cordoba, Argentina, from November 2018 to April 2019, this method estimates the polarity of vertical charge distributions and their altitudes and thicknesses (or vertical depth) using the very‐high frequency (VHF) source emissions detected by LMAs. When this method is applied to LMA data for extended periods of time, it is capable of inferring a storm's bulk electrical charge structure throughout its life cycle. This method reliably predicted the polarity of charge within which lightning flashes propagated and was validated in comparison to methods that require manual assignment of polarities via visual inspection of VHF lightning sources. Examples of normal and anomalous charge structures retrieved using Chargepol for storms in Central Argentina during RELAMPAGO are presented for the first time. Application of Chargepol to five months of LMA data in Central Argentina and several locations in the United States allowed for the characterization of the charge structure in these regions and for a reliable comparison using the same methodology. About 13.3% of Cordoba thunderstorms were defined by an anomalous charge structure, slightly higher than in Oklahoma (12.5%) and West Texas (11.1%), higher than Alabama (7.3%), and considerably lower than in Colorado (82.6%). Some of the Cordoba anomalous thunderstorms presented enhanced low‐level positive charge, a feature rarely if ever observed in Colorado thunderstorms.more » « less
-
Abstract. There has been a growing concern that most climate models predict precipitation that is too frequent, likely due to lack of reliable subgrid variabilityand vertical variations in microphysical processes in low-level warm clouds.In this study, the warm-cloud physics parameterizations in the singe-columnconfigurations of NCAR Community Atmospheric Model version 6 and 5 (SCAM6and SCAM5, respectively) are evaluated using ground-based and airborneobservations from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Aerosol and Cloud Experiments in the EasternNorth Atlantic (ACE-ENA) field campaign near the Azores islands during2017–2018. The 8-month single-column model (SCM) simulations show that both SCAM6 and SCAM5 cangenerally reproduce marine boundary layer cloud structure, majormacrophysical properties, and their transition. The improvement in warm-cloud properties from the Community Atmospheric Model 5 and 6 (CAM5 to CAM6) physics can be found through comparison with the observations. Meanwhile, both physical schemes underestimate cloud liquidwater content, cloud droplet size, and rain liquid water content butoverestimate surface rainfall. Modeled cloud condensation nuclei (CCN)concentrations are comparable with aircraft-observed ones in the summer but areoverestimated by a factor of 2 in winter, largely due to the biases in thelong-range transport of anthropogenic aerosols like sulfate. We also testthe newly recalibrated autoconversion and accretion parameterizations thataccount for vertical variations in droplet size. Compared to theobservations, more significant improvement is found in SCAM5 than in SCAM6.This result is likely explained by the introduction of subgrid variationsin cloud properties in CAM6 cloud microphysics, which further suppresses thescheme's sensitivity to individual warm-rain microphysical parameters. Thepredicted cloud susceptibilities to CCN perturbations in CAM6 are within areasonable range, indicating significant progress since CAM5 which produces anaerosol indirect effect that is too strong. The present study emphasizes theimportance of understanding biases in cloud physics parameterizations bycombining SCM with in situ observations.more » « less
-
null (Ed.)Over the eastern north Atlantic (ENA) ocean, a total of 21 non-drizzling single-layer marine boundary layer (MBL) stratus and stratocumulus cloud caseperiods are selected in order to investigate the impacts of the environmental variables on the aerosol-cloud interaction (ACI_r) using the ground-based measurements from the Department of Energy Atmospheric Radiation Measurement (ARM) facility at the ENA site during the period 2016 – 2018. The ACI_r represents the relative change of cloud-droplet effective radius r_e with respect to the relative change of cloud condensation nuclei (CCN) number concentration (N_CCN) in the water vapor stratified environment. The ACI_r values vary from -0.004 to 0.207 with increasing precipitable water vapor (PWV) conditions, indicating that r_e is more sensitive to the CCN loading under sufficient water vapor supply, owing to the combined effect of enhanced condensational growth and coalescence processes associated with higher N_c and PWV. The environmental effects on ACI_r are examined by stratifying the data into different lower tropospheric stability (LTS) and vertical component of turbulence kinetic energy (TKE_w) regimes. The higher LTS normally associates with a more adiabatic cloud layer and a lower boundary layer and thus results in higher CCN to cloud droplet conversion and ACI_r. The ACI_r values under a range of PWV double from low TKE_w to high TKE_w regime, indicating a strong impact of turbulence on the ACI_r. The stronger boundary layer turbulence represented by higher TKE_w strengthens the connection and interaction between cloud microphysical properties and the underneath CCN and moisture sources. With sufficient water vapor and low CCN loading, the active coalescence process broadens the cloud droplet size distribution spectra, and consequently results in an enlargement of r_e. The enhanced N_c conversion and condensational growth induced by more intrusions of CCN effectively decrease r_e, which jointly presents as the increased ACI_r. The TKE_w median value of 0.08 m^2 s^(-2) suggests a feasible way in distinguishing the turbulence-enhanced aerosol-cloud interaction in non-drizzling MBL clouds.more » « less
-
Abstract. Over the eastern North Atlantic (ENA) ocean, a total of 20 non-precipitating single-layer marine boundary layer (MBL) stratus and stratocumuluscloud cases are selected to investigate the impacts of the environmental variables on the aerosol–cloud interaction (ACIr) using theground-based measurements from the Department of Energy Atmospheric Radiation Measurement (ARM) facility at the ENA site during 2016–2018. TheACIr represents the relative change in cloud droplet effective radius re with respect to the relative change in cloudcondensation nuclei (CCN) number concentration at 0.2 % supersaturation (NCCN,0.2 %) in the stratified water vaporenvironment. The ACIr values vary from −0.01 to 0.22 with increasing sub-cloud boundary layer precipitable water vapor (PWVBL)conditions, indicating that re is more sensitive to the CCN loading under sufficient water vapor supply, owing to the combined effectof enhanced condensational growth and coalescence processes associated with higher Nc and PWVBL. The principal componentanalysis shows that the most pronounced pattern during the selected cases is the co-variations in the MBL conditions characterized by the verticalcomponent of turbulence kinetic energy (TKEw), the decoupling index (Di), and PWVBL. The environmental effects onACIr emerge after the data are stratified into different TKEw regimes. The ACIr values, under both lowerand higher PWVBL conditions, more than double from the low-TKEw to high-TKEw regime. This can be explained bythe fact that stronger boundary layer turbulence maintains a well-mixed MBL, strengthening the connection between cloud microphysical properties andthe below-cloud CCN and moisture sources. With sufficient water vapor and low CCN loading, the active coalescence process broadens the cloud dropletsize spectra and consequently results in an enlargement of re. The enhanced activation of CCN and the cloud droplet condensationalgrowth induced by the higher below-cloud CCN loading can effectively decrease re, which jointly presents as the increasedACIr. This study examines the importance of environmental effects on the ACIr assessments and provides observational constraintsto future model evaluations of aerosol–cloud interactions.more » « less
An official website of the United States government
