skip to main content

Title: Estimating the Impacts of Radiation Belt Electrons on Atmospheric Chemistry Using FIREBIRD II and Van Allen Probes Observations

This study considers the impact of electron precipitation from Earth's radiation belts on atmospheric composition using observations from the NASA Van Allen Probes and NSF Focused Investigations of Relativistic Electron Burst Intensity, Range, and Dynamics (FIREBIRD II) CubeSats. Ratios of electron flux between the Van Allen Probes (in near‐equatorial orbit in the radiation belts) and FIREBIRD II (in polar low Earth orbit) during spacecraft conjunctions (2015–2017) allow an estimate of precipitation into the atmosphere. Total Radiation Belt Electron Content, calculated from Van Allen Probes RBSP‐ECT MagEIS data, identifies a sustained 10‐day electron loss event in March 2013 that serves as an initial case study. Atmospheric ionization profiles, calculated by integrating monoenergetic ionization rates across the precipitating electron flux spectrum, provide input to the NCAR Whole Atmosphere Community Climate Model in order to quantify enhancements of atmospheric HOxand NOxand subsequent destruction of O3in the middle atmosphere. Results suggest that current APEEP parameterizations of radiation belt electrons used in Coupled Model Intercomparison Project may underestimate the duration of events as well as higher energy electron contributions to atmospheric ionization and modeled NOxconcentrations in the mesosphere and upper stratosphere.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Award ID(s):
1650738 1650918
Publication Date:
Journal Name:
Journal of Geophysical Research: Atmospheres
DOI PREFIX: 10.1029
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Terrestrial lightning frequently serves as a loss mechanism for energetic electrons in the Van Allen radiation belts, leading to lightning‐induced electron precipitation (LEP). Regardless of the specific causes, energetic electron precipitation from the radiation belts in general has a significant influence on the ozone concentration in the stratosphere and mesosphere. The atmospheric chemical effects induced by LEP have been previously investigated using subionospheric VLF measurements at Faraday station, Antarctica (65.25°S, 64.27°W,L= 2.45). However, there exist large variations in the precipitation flux, ionization production, and occurrence rate of LEP events depending on the peak current of the parent lightning discharge, as well as the season, location, and intensity of the thunderstorm activity. These uncertainties motivate us to revisit the calculation of atmospheric chemical changes produced by LEP. In this study, we combine a well‐validated LEP model and first‐principles atmospheric chemical simulation, and investigate three intense storms in the year of 2013, 2015, and 2017 at the magnetic latitude of 50., 32., and 35., respectively. Modeling results show that the LEP events in these storms can cumulatively drive significant changes in the,, andconcentration in the mesosphere. These changes aremore »as high as,, andat 75–85 km altitude, respectively, and comparable to the effects typically induced by other types of radiation belt electron precipitation events. Considering the high occurrence rate of thunderstorms around the globe, the long‐term global chemical effects produced by LEP events need to be properly quantified.

    « less
  2. Abstract

    Quantification of energetic electron precipitation caused by wave‐particle interactions is fundamentally important to understand the cycle of particle energization and loss of the radiation belts. One important way to determine how well the wave‐particle interaction models predict losses through pitch‐angle scattering into the atmospheric loss cone is the direct comparison between the ionization altitude profiles expected in the atmosphere due to the precipitating fluxes and the ionization profiles actually measured with incoherent scatter radars. This paper reports such a comparison using a forward propagation of loss‐cone electron fluxes, calculated with the electron pitch angle diffusion model applied to Van Allen Probes measurements, coupled with the Boulder Electron Radiation to Ionization model, which propagates the fluxes into the atmosphere. The density profiles measured with the Poker Flat Incoherent Scatter Radar operating in modes especially designed to optimize measurements in the D‐region, show multiple instances of close quantitative agreement with predicted density profiles from precipitation of electrons caused by wave‐particle interactions in the inner magnetosphere, alternated with intervals with large differences between observations and predictions. Several‐minute long intervals of close prediction‐observation approximation in the 65–93 km altitude range indicate that the whistler wave‐electron interactions models are realistic and produce precipitation fluxes ofmore »electrons with energies between 10 keV and >100 keV that are consistent with observations. The alternation of close model‐data agreement and poor agreement intervals indicates that the regions causing energetic electron precipitation are highly spatially localized.

    « less
  3. Abstract

    Discovery of the Earth's Van Allen radiation belts by instruments flown on Explorer 1 in 1958 was the first major discovery of the Space Age. The observation of distinct inner and outer zones of trapped megaelectron volt (MeV) particles, primarily protons at low altitude and electrons at high altitude, led to early models for source and loss mechanisms including Cosmic Ray Albedo Neutron Decay for inner zone protons, radial diffusion for outer zone electrons and loss to the atmosphere due to pitch angle scattering. This scattering lowers the mirror altitude for particles in their bounce motion parallel to the Earth's magnetic field until they suffer collisional loss. A view of the belts as quasi‐static inner and outer zones of energetic particles with different sources was modified by observations made during the Solar Cycle 22 maximum in solar activity over 1989–1991. The dynamic variability of outer zone electrons was measured by the Combined Radiation Release and Effects Satellite launched in July 1990. This variability is caused by distinct types of heliospheric structure that vary with the solar cycle. The launch of the twin Van Allen Probes in August 2012 has provided much longer and more comprehensive measurements during the decliningmore »phase of Solar Cycle 24. Roughly half of moderate geomagnetic storms, determined by intensity of the ring current carried mostly by protons at hundreds of kiloelectron volts, produce an increase in trapped relativistic electron flux in the outer zone. Mechanisms for accelerating electrons of hundreds of electron volts stored in the tail region of the magnetosphere to MeVenergies in the trapping region are described in this review: prompt and diffusive radial transport and local acceleration driven by magnetospheric waves. Such waves also produce pitch angle scattering loss, as does outward radial transport, enhanced when the magnetosphere is compressed. While quasilinear simulations have been used to successfully reproduce many essential features of the radiation belt particle dynamics, nonlinear wave‐particle interactions are found to be potentially important for causing more rapid particle acceleration or precipitation. The findings on the fundamental physics of the Van Allen radiation belts potentially provide insights into understanding energetic particle dynamics at other magnetized planets in the solar system, exoplanets throughout the universe, and in astrophysical and laboratory plasmas. Computational radiation belt models have improved dramatically, particularly in the Van Allen Probes era, and assimilative forecasting of the state of the radiation belts has become more feasible. Moreover, machine learning techniques have been developed to specify and predict the state of the Van Allen radiation belts. Given the potential Space Weather impact of radiation belt variability on technological systems, these new radiation belt models are expected to play a critical role in our technological society in the future as much as meteorological models do today.

    « less
  4. Abstract

    This study investigates the energy spectrum of electron microbursts observed by the Focused Investigations of Relativistic Electron Burst Intensity, Range, and Dynamics II (FIREBIRD‐II, henceforth FIREBIRD) CubeSats. FIREBIRD is a pair of CubeSats, launched in January 2015 into a low Earth orbit, which focuses on studying electron microbursts. High‐resolution electron data from FIREBIRD‐II consist of 5 differential energy channels between 200 keV and 1 MeV and a1 MeV integral channel. This covers an energy range that has not been well studied from low Earth orbit with good energy and time resolution. This study aims to improve the understanding of the scattering mechanism behind electron microbursts by investigating their spectral properties and their relationship with the equatorial electron population under different geomagnetic conditions. Microbursts are identified in the region of the North Atlantic where FIREBIRD only observes electrons in the bounce loss cone. The electron flux and exponential energy spectrum of each microburst are calculated using a FIREBIRD instrument response modeled in GEANT4 (GEometry ANd Tracking) and compared with the near‐equatorial electron spectra measured by the Van Allen Probes. Microbursts occurring when the Auroral Electrojet (AE) index is enhanced tend to carry more electrons with relatively higher energies. The microburst scatteringmore »mechanism is more efficient at scattering electrons with lower energies; however, the difference in scattering efficiency between low and high energy is reduced during periods of enhanced AE.

    « less
  5. Abstract

    We perform ensemble simulations of radiation belt electron acceleration using the quasi‐linear approach during the storm on 9 October 2012, where chorus waves dominated electron acceleration atL = 5.2. Based on a superposed epoch analysis of 11 similar storms when both multi‐MeV electron flux enhancements and chorus wave activities were observed by Van Allen Probes, we use percentiles to sample the normalized input distributions for the four key inputs to estimate their relative perturbations. Using 11 points in each input parameter including chorus wave amplitudeBw, chorus wave peak frequencyfm, background magnetic fieldB0, and electron densityNe, we ran 114simulations to quantify the impact of uncertainties in the input parameters on the resulting simulated electron acceleration by chorus. By comparing the simulations to observations, our ensemble simulations reveal that inaccuracies in all four input parameters significantly affect the simulated electron acceleration, with the largest simulation errors attributed to the uncertainties inBw,Ne, andfm. The simulation can deviate from the observations by four orders of magnitude, while members with largest probability density (smallest perturbations in the input) provide reasonable estimations of output fluxes with log accuracy errors concentrated between ∼−2.0 and 0.5. Quantifying the uncertainties in our study is a prerequisite for the validation of ourmore »radiation belt electron model and improvements of accurate electron flux predictions.

    « less