skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Remotely detected aboveground plant function predicts belowground processes in two prairie diversity experiments
Abstract Imaging spectroscopy provides the opportunity to incorporate leaf and canopy optical data into ecological studies, but the extent to which remote sensing of vegetation can enhance the study of belowground processes is not well understood. In terrestrial systems, aboveground and belowground vegetation quantity and quality are coupled, and both influence belowground microbial processes and nutrient cycling. We hypothesized that ecosystem productivity, and the chemical, structural and phylogenetic‐functional composition of plant communities would be detectable with remote sensing and could be used to predict belowground plant and soil processes in two grassland biodiversity experiments: the BioDIV experiment at Cedar Creek Ecosystem Science Reserve in Minnesota and the Wood River Nature Conservancy experiment in Nebraska. We tested whether aboveground vegetation chemistry and productivity, as detected from airborne sensors, predict soil properties, microbial processes and community composition. Imaging spectroscopy data were used to map aboveground biomass, green vegetation cover, functional traits and phylogenetic‐functional community composition of vegetation. We examined the relationships between the image‐derived variables and soil carbon and nitrogen concentration, microbial community composition, biomass and extracellular enzyme activity, and soil processes, including net nitrogen mineralization. In the BioDIV experiment—which has low overall diversity and productivity despite high variation in each—belowground processes were driven mainly by variation in the amount of organic matter inputs to soils. As a consequence, soil respiration, microbial biomass and enzyme activity, and fungal and bacterial composition and diversity were significantly predicted by remotely sensed vegetation cover and biomass. In contrast, at Wood River—where plant diversity and productivity were consistently higher—belowground processes were driven mainly by variation in the quality of aboveground inputs to soils. Consequently, remotely sensed functional, chemical and phylogenetic composition of vegetation predicted belowground extracellular enzyme activity, microbial biomass, and net nitrogen mineralization rates but aboveground biomass (or cover) did not. The contrasting associations between the quantity (productivity) and quality (composition) of aboveground inputs with belowground soil attributes provide a basis for using imaging spectroscopy to understand belowground processes across productivity gradients in grassland systems. However, a mechanistic understanding of how above and belowground components interact among different ecosystems remains critical to extending these results broadly.  more » « less
Award ID(s):
2021898 1831944
PAR ID:
10374778
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecological Monographs
Volume:
92
Issue:
1
ISSN:
0012-9615
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Planting diverse forests has been proposed as a means to increase long‐term carbon (C) sequestration while providing many co‐benefits. Positive tree diversity–productivity relationships are well established, suggesting more diverse forests will lead to greater aboveground C sequestration. However, the effects of tree diversity on belowground C storage have the potential to either complement or offset aboveground gains, especially during early stages of afforestation when potential exists for large losses in soil C due to soil decomposition. Thus, experimental tests of the effects of planted tree biodiversity on changes in whole‐ecosystem C balance are needed. Here, we present changes in above‐ and belowground C pools 6 years after the initiation of the Forests and Biodiversity experiment (FAB1), consisting of high‐density plots of one, two, five, or 12 tree species planted in a common garden. The trees included a diverse range of native species, including both needle‐leaf conifer and broadleaf angiosperm species, and both ectomycorrhizal and arbuscular mycorrhizal species. We quantified the effects of species richness, phylogenetic diversity, and functional diversity on aboveground woody C, as well as on mineral soil C accumulation, fine root C, and soil aggregation. Surprisingly, changes in aboveground woody C pools were uncorrelated to changes in mineral soil C pools, suggesting that variation in soil C accumulation was not driven by the quantity of plant litter inputs. Aboveground woody C accumulation was strongly driven by species and functional identity; however, plots with higher species richness and functional diversity accumulated more C in aboveground wood than expected based on monocultures. We also found weak but significant effects of tree species richness, identity, and mycorrhizal type on soil C accumulation. To assess the role of the microbial community in mediating these effects, we further compared changes in soil C pools to phospholipid fatty acid (PLFA) profiles. Soil C pools and accumulation were more strongly correlated with specific microbial clades than with total microbial biomass or plant diversity. Our results highlight rapidly emerging and microbially mediated effects of tree biodiversity on soil C storage in the early years of afforestation that are independent of gains in aboveground woody biomass. 
    more » « less
  2. {"Abstract":["The Monsoon Rainfall Manipulation Experiment (MRME) is to understand\n changes in ecosystem structure and function of a semiarid grassland\n caused by increased precipitation variability, which alters the\n pulses of soil moisture that drive primary productivity, community\n composition, and ecosystem functioning. The overarching hypothesis\n being tested is that changes in event size and variability will\n alter grassland productivity, ecosystem processes, and plant\n community dynamics. In particular, we predict that many small events\n will increase soil CO2 effluxes by stimulating microbial processes\n but not plant growth, whereas a small number of large events will\n increase aboveground net primary production (ANPP) and soil\n respiration by providing sufficient deep soil moisture to sustain\n plant growth for longer periods of time during the summer monsoon.\n To measure ANPP (i.e., the change in plant biomass, represented by\n stems, flowers, fruit and foliage, over time), the vegetation\n variables in this dataset, including species composition and the\n cover and height of individuals, are sampled twice yearly (spring\n and fall) at permanent 1m x 1m plots. The data from these plots is\n used to build regressions correlating biomass and volume via weights\n of select harvested species obtained in SEV157, "Net Primary\n Productivity (NPP) Weight Data." This biomass data is included\n in SEV206, "Seasonal Biomass and Seasonal and Annual NPP for\n the Monsoon (MRME) Study.""]} 
    more » « less
  3. Abstract Increased nutrient inputs due to anthropogenic activity are expected to increase primary productivity across terrestrial ecosystems, but changes in allocation aboveground versus belowground with nutrient addition have different implications for soil carbon (C) storage. Thus, given that roots are major contributors to soil C storage, understanding belowground net primary productivity (BNPP) and biomass responses to changes in nutrient availability is essential to predicting carbon–climate feedbacks in the context of interacting global environmental changes. To address this knowledge gap, we tested whether a decade of nitrogen (N) and phosphorus (P) fertilization consistently influenced aboveground and belowground biomass and productivity at nine grassland sites spanning a wide range of climatic and edaphic conditions in the continental United States. Fertilization effects were strong aboveground, with both N and P addition stimulating aboveground biomass at nearly all sites (by 30% and 36%, respectively, on average). P addition consistently increased root production (by 15% on average), whereas other belowground responses to fertilization were more variable, ranging from positive to negative across sites. Site‐specific responses to P were not predicted by the measured covariates. Atmospheric N deposition mediated the effect of N fertilization on root biomass and turnover. Specifically, atmospheric N deposition was positively correlated with root turnover rates, and this relationship was amplified with N addition. Nitrogen addition increased root biomass at sites with low N deposition but decreased it at sites with high N deposition. Overall, these results suggest that the effects of nutrient supply on belowground plant properties are context dependent, particularly with regard to background N supply rates, demonstrating that site conditions must be considered when predicting how grassland ecosystems will respond to increased nutrient loading from anthropogenic activity. 
    more » « less
  4. Abstract Aboveground ecosystem structure moderates and even confers essential ecosystem functions. This includes an ecosystem’s carbon dynamics, which are strongly influenced by its structure: for example, tropical savannas like those in central Kenya store substantial amounts of carbon in soil. Savannas’ belowground allocation of carbon makes them important for global carbon sequestration, but difficult to monitor. However, the labile soil carbon pool is responsive to changes in ecosystem structure and is thus a good indicator of overall soil organic carbon dynamics. Kenya’s savanna structure is controlled by belowground ecosystem engineers (termites), ambient weather conditions, and the aboveground engineering influences of large-bodied, mammalian consumers. As a result, climate change and biodiversity loss are likely to change savannas’ aboveground structure. To predict likely outcomes of these threats on savanna soil carbon, it is critical to explore the relationships between labile soil carbon and ecosystem structure, local climate, and mammalian consumer community composition. In a large-scale, long-term herbivore exclosure experiment in central Kenya, we sampled labile carbon from surface soils at three distinct savanna structural elements: termite mounds, beneath tree canopies, and the grassland matrix. In one sampling year, we measured total extractable organic carbon (TEOC), total extractable nitrogen (TEN), and extractable microbial biomass for each sample. Across three sampling years with varying weather conditions, we measured rate of labile soil carbon mineralization. We quantified areal coverage of each structural element across herbivore community treatments to estimate pool sizes and mineralization dynamics at the plot scale. Concentrations and stocks of soil TEOC, TEN, and microbial biomass were driven by the structural element from which they were sampled (soils collected under tree canopies generally had the highest of each). Large-bodied herbivore community composition interacted variably with concentrations, stocks, and carbon mineralization, resulting in apparently compensatory effects of herbivore treatment and structural element with no net effects of large herbivore community composition on plot-scale labile carbon dynamics. We confirmed engineering of structural heterogeneity by consumers and identified distinct labile carbon dynamics in each structural element. However, carbon and nitrogen were also influenced by consumer community composition, indicating potentially compensatory interacting effects of herbivore treatment and structural element. These results suggest that one pathway by which consumers influence savanna carbon is by altering its structural heterogeneity and thus the heterogeneity of its plot-scale labile carbon. 
    more » « less
  5. Abstract Tidal freshwater marshes can protect downstream ecosystems from eutrophication by intercepting excess nutrient loads, but recent studies in salt marshes suggest nutrient loading compromises their structural and functional integrity. Here, we present data on changes in plant biomass, microbial biomass and activity, and soil chemistry from plots in a tidal freshwater marsh on the Altamaha River (GA) fertilized for 10 yr with nitrogen (+N), phosphorus (+P), or nitrogen and phosphorus (+NP). Nitrogen alone doubled aboveground biomass and enhanced microbial activity, specifically rates of potential nitrification, denitrification, and methane production measured in laboratory incubations. Phosphorus alone increased soil P and doubled microbial biomass but did not affect microbial processes. Nitrogen or P alone decreased belowground biomass and soil carbon (C) whereas +NP increased aboveground biomass, microbial biomass and N cycling, and N, P, and C assimilation and burial more than either nutrient alone. Our findings suggest differential nutrient limitation of tidal freshwater macrophytes by N and microbes by P, similar to what has been observed in salt marshes. Macrophytes outcompete microbes for P in response to long‐term N and P additions, leading to increased soil C storage through increased inputs of belowground biomass relative to N and P added singly. The susceptibility of tidal freshwater marshes to long‐term nutrient enrichment and, hence their ability to mitigate eutrophication will depend on the quantity and relative proportion of N vs. P entering estuaries and tidal wetlands. 
    more » « less