Abstract Roots are essential to the diversity and functioning of plant communities, but trade‐offs in rooting strategies are still poorly understood.We evaluated existing frameworks of rooting strategy trade‐offs and tested their underlying assumptions, guided by the hypothesis that community‐level rooting strategies are best described by a combination of variation in organ‐level traits, plant‐level root:shoot allocation and symbiosis‐level mycorrhizal dependency. We tested this hypothesis using data on plant community structure, above‐ and below‐ground biomass, eight root traits including mycorrhizal colonisation and soil properties from an edaphic gradient driven by elevation and water availability in sandhills prairie, Nebraska, USA.We found multidimensional trade‐offs in rooting strategies represented by a two‐way productivity‐durability trade‐off axis (captured by root length density and root dry matter content) and a three‐way resource acquisition trade‐off between specific root length, root:shoot mass ratio and mycorrhizal dependence. Variation in rooting strategies was driven to similar extents by interspecific differences and intraspecific responses to soil properties.Organ‐level traits alone were insufficient to capture community‐level trade‐offs in rooting strategies across the edaphic gradient. Instead, trait variation encompassing organ, plant and symbiosis levels revealed that consideration of whole‐plant phenotypic integration is essential to defining multidimensional trade‐offs shaping the functional variation of root systems. Read the freePlain Language Summaryfor this article on the Journal blog.
more »
« less
Opportunities, challenges and pitfalls in characterizing plant water‐use strategies
Abstract Classifying the diverse ways that plants respond to hydrologic stress into generalizable ‘water‐use strategies’ has long been an eco‐physiological research goal. While many schemes for describing water‐use strategies have proven to be quite useful, they are also associated with uncertainties regarding their theoretical basis and their connection to plant carbon and water relations. In this review, we discuss the factors that shape plant water stress responses and assess the approaches used to classify a plant's water‐use strategy, paying particular attention to the popular but controversial concept of a continuum from isohydry to anisohydry.A generalizable and predictive framework for assessing plant water‐use strategies has been historically elusive, yet recent advances in plant physiology and hydraulics provide the field with a way past these obstacles. Specifically, we promote the idea that many metrics that quantify water‐use strategies are highly dynamic and emergent from the interaction between plant traits and environmental conditions, and that this complexity has historically hindered the development of a generalizable water‐use strategy framework.This idea is explored using a plant hydraulics model to identify: (a) distinct temporal phases in plant hydraulic regulation during drought that underpin dynamic water‐use responses, and (b) how variation in both traits and environmental forcings can significantly alter common metrics used to characterize plant water‐use strategies. This modelling exercise can bridge the divide between various conceptualizations of water‐use strategies and provide targeted hypotheses to advance the understanding and quantification of plant water status regulation across spatial and temporal scales.Finally, we describe research frontiers that are necessary to improve the predictive capacity of the plant water‐use strategy concept, including further investigation into the below‐ground determinants of plant water relations, targeted data collection efforts and the potential to scale these concepts from individuals to whole regions. A freePlain Language Summarycan be found within the Supporting Information of this article.
more »
« less
- PAR ID:
- 10374795
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Functional Ecology
- Volume:
- 36
- Issue:
- 1
- ISSN:
- 0269-8463
- Page Range / eLocation ID:
- p. 24-37
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In semi‐arid regions where drought and wildfire events often co‐occur, such as in Southern California chaparral, relationships between plant hydration, drought‐ and fire‐adapted traits may explain landscape‐scale wildfire dynamics. To examine these patterns, fire scientists and plant physiologists quantify hydration in plants via mass‐based metrics of water content, including live fuel moisture, or pressure‐based metrics of physiological status, such as xylem water potential; however, relationships across these metrics, plant traits and flammability remain unresolved.To determine the impact of hydration on tissue‐level flammability (leaves and stems), we conducted laboratory dehydration tests across wet and dry seasons in which we simultaneously measured xylem water potential, live fuel moisture and flammability. We tested two widespread chaparral shrubs,Adenostoma fasciculatumandCeanothus megacarpus.Live fuel moisture showed a threshold‐type relationship with tissue flammability (increased ignitability and combustibility at specific hydration levels) that aligned with drought‐response traits (turgor loss point) and fire behaviour (increased fire likelihood and spread) identified at the landscape scale. Water potential was the better predictor of flammability in linear statistical models.A. fasciculatumwas more flammable thanC. megacarpus, and both species were more flammable during the wet growing season, suggesting seasonal growth or drought‐related tissue characteristics other than moisture content, such as lignin or chemical content, are critical for determining flammability.Our results suggest a mechanism for landscape‐scale increases in flammability at specific levels of drought stress. Integration of drought‐related traits, such as the turgor loss point, might improve models of wildfire risk in drought‐ and fire‐prone systems. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Abstract Leaf energy balance may influence plant performance and community composition. While biophysical theory can link leaf energy balance to many traits and environment variables, predicting leaf temperature and key driver traits with incomplete parameterizations remains challenging. Predicting thermal offsets (δ,Tleaf − Tairdifference) or thermal coupling strengths (β,Tleafvs.Tairslope) is challenging.We ask: (a) whether environmental gradients predict variation in energy balance traits (absorptance, leaf angle, stomatal distribution, maximum stomatal conductance, leaf area, leaf height); (b) whether commonly measured leaf functional traits (dry matter content, mass per area, nitrogen fraction, δ13C, height above ground) predict energy balance traits; and (c) how traits and environmental variables predictδandβamong species.We address these questions with diurnal measurements of 41 species co‐occurring along a 1,100 m elevation gradient spanning desert to alpine biomes. We show that (a) energy balance traits are only weakly associated with environmental gradients and (b) are not well predicted by common functional traits. We also show that (c)δandβcan be partially approximated using interactions among site environment and traits, with a much larger role for environment than traits. The heterogeneity in leaf temperature metrics and energy balance traits challenges larger‐scale predictive models of plant performance under environmental change. A freePlain Language Summarycan be found within the Supporting Information of this article.more » « less
-
Abstract The temporal stability of plant productivity affects species' access to resources, exposure to stressors and strength of interactions with other species in the community, including support to the food web. The magnitude of temporal stability depends on how a species allocates resources among tissues and across phenological stages, such as vegetative growth versus reproduction. Understanding how plant phenological traits correlate with the long‐term stability of plant biomass is particularly important in highly variable ecosystems, such as drylands.We evaluated whether phenological traits predict the temporal stability of plant species productivity by correlating 18 years of monthly phenology observations with biannual estimates of above‐ground plant biomass for 98 plant species from semi‐arid drylands. We then paired these phenological traits with potential climate drivers to identify abiotic contexts that favour specific phenological strategies among plant species.Phenological traits predicted the stability of plant species above‐ground biomass. Plant species with longer vegetative phenophases not only had more stable biomass production over time but also failed to fruit in a greater proportion of years, indicating a growth–reproduction trade‐off. Earlier leaf‐out dates, longer fruiting duration and longer time lags between leaf and fruit production also predicted greater temporal stability.Species with stability‐promoting traits began greening in drier conditions than their unstable counterparts and experienced unexpectedly greater exposure to climate stress, indicated by the wider range of temperatures and precipitation experienced during biologically active periods.Our results suggest that bet‐hedging strategies that spread resource acquisition and reproduction over long time periods help to stabilize plant species productivity in variable environments, such as drylands. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Abstract We review results from field experiments that simulate drought, an ecologically impactful global change threat that is predicted to increase in magnitude, extent, duration and frequency. Our goal is to address, from primarily an ecosystem perspective, the questions ‘What have we learned from drought experiments?’ and ‘Where do we go from here?’.Drought experiments are among the most numerous climate change manipulations and have been deployed across a wide range of biomes, although most are conducted in short‐statured, water‐limited ecosystems. Collectively, these experiments have enabled ecologists to quantify the negative responses to drought that occur for most aspects of ecosystem structure and function. Multiple meta‐analyses of responses have also enabled comparisons of relative effect sizes of drought across hundreds of sites, particularly for carbon cycle metrics. Overall, drought experiments have provided strong evidence that ecosystem sensitivity to drought increases with aridity, but that plant traits associated with aridity are not necessarily predictive of drought resistance. There is also intriguing evidence that as drought magnitude or duration increases to extreme levels, plant strategies may shift from drought tolerance to drought escape/avoidance.We highlight three areas where more drought experiments are needed to advance our understanding. First, because drought is intensifying in multiple ways, experiments are needed that address alterations in drought magnitude versus duration, timing and/or frequency (individually and interactively). Second, drivers of drought may be shifting—from precipitation deficits to rising atmospheric demand for water—and disentangling how ecosystems respond to changes in hydrological ‘supply versus demand’ is critical for understanding drought impacts in the future. Finally, more attention should be focussed on post‐drought recovery periods since legacies of drought can affect ecosystem functioning much longer than the drought itself.We conclude with a call for a fundamental shift in the focus of drought experiments from those designed primarily as ‘response experiments’, quantifying the magnitude of change in ecosystem structure and function, to more ‘mechanistic experiments’—those that explicitly manipulate ecological processes or attributes thought to underpin drought responses. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
An official website of the United States government
