skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Role of Whistler‐Mode Waves in Electron Interaction With Dipolarizing Flux Bundles
Abstract The magnetotail is the main source of energetic electrons for Earth’s inner magnetosphere. Electrons are adiabatically heated during flow bursts (rapid earthward motion of the plasma) within dipolarizing flux bundles (concurrent increases and dipolarizations of the magnetic field). The electron heating is evidenced near or within dipolarizing flux bundles as rapid increases in the energetic electron flux (10–100 keV); it is often referred to as injection. The anisotropy in the injected electron distributions, which is often perpendicular to the magnetic field, generates whistler‐mode waves, also commonly observed around such dipolarizing flux bundles. Test‐particle simulations reproduce several features of injections and electron adiabatic dynamics. However, the feedback of the waves on the electron distributions has been not incorporated into such simulations. This is because it has been unclear, thus far, whether incorporating such feedback is necessary to explain the evolution of the electron pitch‐angle and energy distributions from their origin, reconnection ejecta in the mid‐tail region, to their final destination, and the electron injection sites in the inner magnetosphere. Using an analytical model we demonstrate that wave feedback is indeed important for the evolution of electron distributions. Combining canonical guiding center theory and the mapping technique we model electron adiabatic heating and scattering by whistler‐mode waves around a dipolarizing flux bundle. Comparison with spacecraft observations allows us to validate the efficacy of the proposed methodology. Specifically, we demonstrate that electron resonant interactions with whistler‐mode waves can indeed change markedly the pitch‐angle distribution of energetic electrons at the injection site and are thus critical to incorporate in order to explain the observations. We discuss the importance of such resonant interactions for injection physics and for magnetosphere‐ionosphere coupling.  more » « less
Award ID(s):
1914594 2019914
PAR ID:
10374828
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
127
Issue:
4
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Energetic particle injections are commonly observed in Jupiter's magnetosphere and have important impacts on the radiation belts. We evaluate the roles of electron injections in the dynamics of whistler‐mode waves and relativistic electrons using Juno measurements and wave‐particle interaction modeling. The Juno spacecraft observed injected electron flux bursts at energies up to 300 keV atMshell ∼11 near the magnetic equator during perijove‐31. The electron injections are related to chorus wave bursts at 0.05–0.5fcefrequencies, wherefceis the electron gyrofrequency. The electron pitch angle distributions are anisotropic, peaking near 90° pitch angle, and the fluxes are high during injections. We calculate the whistler‐mode wave growth rates using the observed electron distributions and linear theory. The frequency spectrum of the wave growth rate is consistent with that of the observed chorus magnetic intensity, suggesting that the observed electron injections provide free energy to generate whistler‐mode chorus waves. We further use quasilinear theory to model the impacts of chorus waves on 0.1–10 MeV electrons. Our modeling shows that the chorus waves could cause the pitch angle scattering loss of electrons at <1 MeV energies and accelerate relativistic electrons at multiple MeV energies in Jupiter's outer radiation belt. The electron injections also provide an important seed population at several hundred keV energies to support the acceleration to higher energies. Our wave‐particle interaction modeling demonstrates the energy flow from the electron injections to the relativistic electron population through the medium of whistler‐mode waves in Jupiter's outer radiation belt. 
    more » « less
  2. Abstract Suprathermal electrons (~0.1–10 keV) in the inner magnetosphere are usually observed in a 90°‐peaked pitch angle distribution, formed due to the conservation of the first and second adiabatic invariants as they are transported from the plasma sheet. We report a peculiar field‐aligned suprathermal electron (FASE) distribution measured by Van Allen Probes, where parallel fluxes are 1 order of magnitude higher than perpendicular fluxes. Those FASEs are found to be closely correlated with large‐amplitude hiss waves and are observed around the Landau resonant energies. We demonstrate, using quasilinear diffusion simulations, that hiss waves can rapidly accelerate suprathermal electrons through Landau resonance and create the observed FASE population. The proposed mechanism potentially has broad implications for suprathermal electron dynamics as well as whistler mode waves in the Earth's magnetosphere and has been demonstrated in the Jovian magnetosphere. 
    more » « less
  3. Abstract Energetic (≳50 keV) electron precipitation from the magnetosphere to the ionosphere during substorms can be important for magnetosphere‐ionosphere coupling. Using conjugate observations between the THEMIS, ELFIN, and DMSP spacecraft during a substorm, we have analyzed the energetic electron precipitation, the magnetospheric injection, and the associated plasma waves to examine the role of waves in pitch‐angle scattering plasma sheet electrons into the loss cone. During the substorm expansion phase, ELFIN‐A observed 50–300 keV electron precipitation from the plasma sheet that was likely driven by wave‐particle interactions. The identification of the low‐altitude extent of the plasma sheet from ELFIN is aided by DMSP global auroral images. Combining quasi‐linear theory, numerical test particle simulations, and equatorial THEMIS measurements of particles and fields, we have evaluated the relative importance of kinetic Alfvén waves (KAWs) and whistler‐mode waves in driving the observed precipitation. We find that the KAW‐driven bounce‐averaged pitch‐angle diffusion coefficientsnear the edge of the loss cone are ∼10−6–10−5s−1for these energetic electrons. Thedue to parallel whistler‐mode waves, observed at THEMIS ∼10‐min after the ELFIN observations, are ∼10−8–10−6s−1. Thus, at least in this case, the observed KAWs dominate over the observed whistler‐mode waves in the scattering and precipitation of energetic plasma sheet electrons during the substorm injection. 
    more » « less
  4. Abstract Electron losses from the outer radiation belt are typically attributed to resonant electron scattering by whistler‐mode waves. Although the quasi‐linear diffusive regime of such scattering is well understood, the observed waves are often quite intense and in the nonlinear regime of resonant wave‐particle interaction. Such nonlinear resonant interactions are still being actively studied due to their potential for driving fast precipitation. However, direct observations of nonlinear resonance of whistler‐mode waves with electron distributions are scarce. Here, we present evidence for such resonance with high‐resolution electron energy and pitch angle spectra acquired at low‐altitudes by the dual Electron Losses and Fields INvestgation (ELFIN) CubeSats combined with conjugate measurements of equatorial plasma parameters, wave properties, and electron energy spectra by the Time History of Events and Macroscale Interactions during Substorms and Magnetospheric MultiScale missions. ELFIN has obtained numerous conjunction events exhibiting whistler wave driven precipitation; in this study, we present two such events which epitomize signatures of nonlinear resonant scattering. A test particle simulation of electron interactions with intense whistler‐mode waves prescribed at the equator is employed to directly compare modeled precipitation spectra with ELFIN observations. We show that the observed precipitating spectra match expectations to within observational uncertainties of wave amplitude for reasonable assumptions of wave power distribution along the magnetic field line. These results indicate the importance of nonlinear resonant effects when describing intense precipitation patterns of energetic electrons and open the possibility of remotely investigating equatorial wave properties using just properties of precipitation energy and pitch angle spectra. 
    more » « less
  5. Abstract Energetic electron losses in the Earth's inner magnetosphere are dominated by outward radial diffusion and scattering into the atmosphere by various electromagnetic waves. The two most important wave modes responsible for electron scattering are electromagnetic ion cyclotron (EMIC) waves and whistler‐mode waves (whistler waves) that, acting together, can provide rapid electron losses over a wide energy range from few keV to few MeV. Wave‐particle resonant interaction resulting in electron scattering is well described by quasi‐linear diffusion theory using the cold plasma dispersion, whereas the effects of nonlinear resonances and hot plasma dispersion are less well understood. This study aims to examine these effects and estimate their significance for a particular event during which both wave modes are quasi‐periodically modulated by ultra‐low‐frequency (ULF) compressional waves. Such modulation of EMIC and whistler wave amplitudes provides a unique opportunity to compare nonlinear resonant scattering (important for the most intense waves) with quasi‐linear diffusion (dominant for low‐intensity waves). The same modulation of plasma properties allows better characterization of hot plasma effects on the EMIC wave dispersion. Although hot plasma effects significantly increase the minimum resonant energy,Emin, for the most intense EMIC waves, such effects become negligible for the higher frequency part of the hydrogen‐band EMIC wave spectrum. Nonlinear phase trapping of 300–500 keV electrons through resonances with whistler waves may accelerate and make them resonant with EMIC waves that, in turn, quickly scatter those electrons into the loss‐cone. Our results highlight the importance of nonlinear effects for simulations of energetic electron fluxes in the inner magnetosphere. 
    more » « less