Abstract Electron cyclotron harmonic waves (ECH) play a key role in scattering and precipitation of plasma sheet electrons. Previous analysis on the resonant interaction between ECH waves and electrons assumed that these waves are generated by a loss cone distribution and propagate nearly perpendicular to the background magnetic field. Recent spacecraft observations, however, have demonstrated that such waves can also be generated by low energy electron beams and propagate at moderately oblique angles . To quantify the effects of this newly observed ECH wave mode on electron dynamics in Earth's magnetosphere, we use quasi‐linear theory to calculate the associated electron pitch angle diffusion coefficient. Utilizing THEMIS spacecraft measurements, we analyze in detail a few representative events of beam‐driven ECH waves in the plasma sheet and the outer radiation belt. Based on the observed wave properties and the hot plasma dispersion relation of these waves, we calculate their bounce‐averaged pitch angle, momentum and mixed diffusion coefficients. We find that these waves most efficiently scatter low‐energy electrons (10–500 eV) toward larger pitch angles, on time scales of to seconds. In contrast, loss‐cone‐driven ECH waves most efficiently scatter higher‐energy electrons (500 eV–5 keV) toward lower pitch‐angles. Importantly, beam‐driven ECH waves can effectively scatter ionospheric electron outflows out of the loss cone near the magnetic equator. As a result, these outflows become trapped in the magnetosphere, forming a near‐field‐aligned anisotropic electron population. Our work highlights the importance of ECH waves, particularly beam‐driven modes, in regulating magnetosphere‐ionosphere particle and energy coupling.
more »
« less
Beam‐Driven Electron Cyclotron Harmonic Waves in Earth's Magnetotail
Abstract Although electron cyclotron harmonic (ECH) waves are the primary contributor to plasma sheet electron scattering loss, experimental verification of their most widely accepted excitation mechanism, loss‐cone instability, has been lacking for decades. Using 10 years of time history of events and macroscale interactions during substorms satellite observations, we investigate ECH wave properties near dipolarization fronts, the predominant source of such waves. To our surprise we find that more than 30% of observed ECH waves have moderately oblique (∼70°) wave normal angles (WNA), much less than the ∼85° expected from classical loss‐cone instability. These moderately oblique WNA ECH waves carry a strong field‐aligned electric field that is used to identify them. They are often observed with cold, dense electrons that exhibit enhanced parallel flux at a few hundred eV energy, which suggests that low‐energy counterstreaming beams (likely of ionospheric origin) might be their free energy source. By solving the linear dispersion relation for parameters representative of such plasma sheet electron distributions, we confirm that ECH waves at WNA ∼ 70° can indeed be driven unstable by such beams. Our work reveals a previously unknown excitation mechanism for ECH waves and exposes the need for quantifying the conditions for and relative importance of beam‐driven waves compared to those excited by the loss‐cone instability in Earth's plasma sheet.
more »
« less
- Award ID(s):
- 1902699
- PAR ID:
- 10374866
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 126
- Issue:
- 3
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Electron cyclotron harmonic (ECH) waves, potential drivers for diffuse aurora precipitation, have been extensively investigated for decades. The generation mechanism of ECH waves, however, remains an open question. Theoretical work in 1970s has demonstrated that ECH waves can be excited by loss cone distributions of hot plasma sheet electrons. Recent THEMIS spacecraft observations, however, indicate that the waves can also be excited by low energy electron beams. Utilizing interferometry techniques to analyze the phase difference between electric potentials measured by individual probes on Electric Field Instrument antenna pairs on THEMIS spacecraft, we compute the wavenumber of both beam‐driven ECH waves and loss‐cone‐driven ECH waves. These wavenumber measurements as well as other wave properties obtained from spacecraft measurements prove to be consistent with expectation from linear instability analysis. This provides us with independent verification of the generation mechanism and linear dispersion relation of beam‐driven and loss‐cone‐driven ECH waves. Our statistical results demonstrate that the median value of the wave vectors of beam‐driven ECH waves, characterized by wave normal angles () less than 80°, is 0.011 m−1; and that of loss‐cone‐driven ECH waves, characterized by wave normal angles larger than 85°, is 0.00765 m−1. Direct wavenumber measurements of ECH waves allow us to better understand the interaction between ECH waves and electrons in Earth's magnetosphere.more » « less
-
Abstract Intense upward electron beams were measured by the Juno JADE instrument in the northern hemisphere, low‐latitude auroral zone source region. In this study we report on how these electron beams interact with plasma near and within the Jovian hectometric (HOM) emission (1 MHz 5 MHz) source region. Within the source region large upward loss cones are observed in the northern polar region at radial distances of 2Rj, magnetic latitude of . Intense, narrow electron beams ( 3 keV) are then observed, but within one second wave‐particle scattering is observed, filling the loss cone to energies 50 keV. These energies persist for several seconds before fading, leaving an empty loss cone again. The loss cone provides a free‐energy source for HOM emission resulting from the cyclotron maser instability. We use quasilinear analysis to examine the generation of HOM and the dynamics of wave‐particle interaction of the electron beams with HOM, and the generation via Landau interaction of whistler mode emission. The dynamic spectrum of the HOM emission generated by the loss‐cone electrons as well as that of the low‐frequency whistler‐mode waves generated by the up‐going electron beam can be constructed by quasilinear theory, which compare well with observation. The saturated state of the energetic electron velocity distribution function constructed via quasilinear theory also compare reasonably with observation.more » « less
-
Whistler waves propagating nearly parallel to the ambient magnetic field experience a nonlinear instability due to transverse currents when the background plasma has a population of sufficiently low energy electrons. Intriguingly, this nonlinear process may generate oblique electrostatic waves, including whistlers near the resonance cone with properties resembling oblique chorus waves in the Earth’s magnetosphere. Focusing on the generation of oblique whistlers, earlier analysis of the instability is extended here to the case where low-energy background plasma consists of both a “cold” population with energy of a few eV and a “warm” electron component with energy of the order of 100 eV. This is motivated by spacecraft observations in the Earth’s magnetosphere where oblique chorus waves were shown to interact resonantly with the warm electrons. The main new results are: 1) the instability producing oblique electrostatic waves is sensitive to the shape of the electron distribution at low energies. In the whistler range of frequencies, two distinct peaks in the growth rate are typically present for the model considered: a peak associated with the warm electron population at relatively low wavenumbers and a peak associated with the cold electron population at relatively high wavenumbers; 2) overall, the instability producing oblique whistler waves near the resonance cone persists (with a reduced growth rate) even in the cases where the temperature of the cold population is relatively high, including cases where cold population is absent and only the warm population is included; 3) particle-in-cell simulations show that the instability leads to heating of the background plasma and formation of characteristic plateau and beam features in the parallel electron distribution function in the range of energies resonant with the instability. The plateau/beam features have been previously detected in spacecraft observations of oblique chorus waves. However, they have been attributed to external sources and have been proposed to be the mechanism generating oblique chorus. In the present scenario, the causality link is reversed and the instability generating oblique whistler waves is shown to be a possible mechanism for formation of the plateau and beam features.more » « less
-
Abstract Energetic electron precipitation into Earth's atmosphere is an important process for radiation belt dynamics and magnetosphere‐ionosphere coupling. The most intense form of such precipitation is microbursts—short‐lived bursts of precipitating fluxes detected on low‐altitude spacecraft. Due to the wide energy range of microbursts (from sub‐relativistic to relativistic energies) and their transient nature, they are thought to be predominantly associated with energetic electron scattering into the loss cone via cyclotron resonance with field‐aligned intense whistler‐mode chorus waves. In this study, we show that intense sub‐relativistic microbursts may be generated via electron nonlinear Landau resonance with very oblique whistler‐mode waves. We combine a theoretical model of nonlinear Landau resonance, equatorial observations of intense very oblique whistler‐mode waves, and conjugate low‐altitude observations of <200 keV electron precipitation. Based on model comparison with observed precipitation, we suggest that such sub‐relativistic microbursts occur by plasma sheet (0.1 − 10 keV) electron trapping in nonlinear Landau resonance, resulting in acceleration to ≲200 keV energies and simultaneous transport into the loss cone. The proposed scenario of intense sub‐relativistic (≲200 keV) microbursts demonstrates the importance of very oblique whistler‐mode waves for radiation belt dynamics.more » « less
An official website of the United States government
