skip to main content

Search for: All records

Award ID contains: 1902699

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Plasma sheet electron precipitation into the diffuse aurora is critical for magnetosphere‐ionosphere coupling. Recent studies have shown that electron phase space holes can pitch‐angle scatter electrons and may produce plasma sheet electron precipitation. These studies have assumed identical electron hole parameters to estimate electron scattering rates (Vasko et al., 2018, In this study, we have re‐evaluated the efficiency of this scattering by incorporating realistic electron hole properties from direct spacecraft observations into computing electron diffusion rates and lifetimes. The most important electron hole properties in this evaluation are their distributions in velocity and spatial scale and electric field root‐mean‐square intensity (). Using direct measurements of electron holes during a plasma injection event observed by the Van Allen Probe at, we find that when4 mV/m electron lifetimes can drop below 1 h and are mostly within strong diffusion limits at energies below10 keV. During an injection observed by the THEMIS spacecraft at, electron holes with even typical intensities (1 mV/m) can deplete low‐energy (a few keV) plasma sheet electrons within tens of minutes following injections and convection from the tail. Our results confirm that electron holes are a significant contributor to plasma sheet electron precipitation during injections.

    more » « less
  2. Abstract

    Earth's magnetotail is filled with solar wind and ionospheric electrons, whose initial energies are significantly lower than the typical energies (temperatures) of plasmasheet electrons. One of the most common mechanisms responsible for heating of solar wind and ionospheric electrons in Earth's magnetotail is adiabatic heating caused by earthward convection of these electrons from the deep tail (i.e., from the region of a weak magnetic field) toward the region of stronger magnetic fields closer to Earth. This heating is moderated by electron losses into the ionosphere due to local wave scattering. In this study, we compare electron spectra from simultaneous observations of The Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft at different radial distances with spectra obtained from a simple model that includes adiabatic heating and losses. Our comparison shows that the model heating significantly overestimates the increase in energetic ( keV) electron fluxes, indicating that losses are essential for accurate modeling of the observed spectra. The required electron losses are similar to or even greater than the losses in the strong diffusion limit (when the loss cone is full). The latter can be interpreted as loss cone widening by field‐aligned electron acceleration.

    more » « less
  3. Abstract

    Although electron cyclotron harmonic (ECH) waves are the primary contributor to plasma sheet electron scattering loss, experimental verification of their most widely accepted excitation mechanism, loss‐cone instability, has been lacking for decades. Using 10 years of time history of events and macroscale interactions during substorms satellite observations, we investigate ECH wave properties near dipolarization fronts, the predominant source of such waves. To our surprise we find that more than 30% of observed ECH waves have moderately oblique (∼70°) wave normal angles (WNA), much less than the ∼85° expected from classical loss‐cone instability. These moderately oblique WNA ECH waves carry a strong field‐aligned electric field that is used to identify them. They are often observed with cold, dense electrons that exhibit enhanced parallel flux at a few hundred eV energy, which suggests that low‐energy counterstreaming beams (likely of ionospheric origin) might be their free energy source. By solving the linear dispersion relation for parameters representative of such plasma sheet electron distributions, we confirm that ECH waves at WNA ∼ 70° can indeed be driven unstable by such beams. Our work reveals a previously unknown excitation mechanism for ECH waves and exposes the need for quantifying the conditions for and relative importance of beam‐driven waves compared to those excited by the loss‐cone instability in Earth's plasma sheet.

    more » « less
  4. Abstract

    Plasma sheet electron precipitation is critical in magnetosphere‐ionosphere coupling and has long been attributed to electron scattering by whistler‐mode and electron cyclotron harmonic waves. Recent observations have revealed that time domain structures (TDSs) that appear as broadband electrostatic fluctuations may also scatter plasma sheet electrons. However, there has been no observational evidence of TDS scattering electrons into the ionosphere. This study presents potential evidence from conjugate observations between the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission and the low‐altitude Enhanced Polar Outflow Probe (e‐POP) spacecraft. During the five events presented, THEMIS observed intense electron injections accompanied by TDSs, while e‐POP captured precipitation of plasma sheet electrons with energies100–325 eV over a broad pitch angle range. The observed TDSs can efficiently scatter these electrons exceeding the strong diffusion limit. Our results suggest that TDSs may contribute to plasma sheet electron scattering around times of injections.

    more » « less
  5. Abstract

    The magnetotail current sheet carries the current responsible for the largest fraction of the energy storage in the magnetotail, the magnetic energy in the lobes. It is thus inextricably linked with the dynamics and evolution of many magnetospheric phenomena, such as substorms. The magnetotail current sheet structure and stability depend mostly on the kinetic properties of the plasma populating the magnetotail. One of the most underinvestigated properties of this plasma is electron temperature anisotropy, which may contribute a large fraction of the total current. Using observations from five missions in the magnetotail, we examine the electron temperature anisotropy,Te/Te, and its potential contribution to the current density, quantified by the firehose parameter (βeβe)/2, acrossy∈[−20,20]REandx∈[−100,−10]RE. We find that a significant fraction (>30%) of all current sheets have an anisotropic electron current density >10% of the total current. These current sheets form two distinct groups: (1) near‐Earth (<30 RE) accompanied by weak plasma flows (<100 km/s) and enhanced equatorial magnetic field (>3 nT) and (2) middle tail (>40 RE) accompanied by fast plasma flows (>300 km/s) and small equatorial magnetic field (≤1 nT). For a significant number of near‐Earth current sheets, the anisotropic electron current can be >25% of the total current density. Our findings suggest that electron temperature anisotropy should be included in current sheet models describing realistic magnetotail structure and dynamics.

    more » « less
  6. null (Ed.)