skip to main content


Title: Extreme Aerosol Events Over Eastern North America: 1. Characterizing and Simulating Historical Events
Abstract

Improved characterization of the spatiotemporal extent, intensity, and causes of extreme aerosol optical depth events is critical to quantifying their regional climate forcing and the link to near‐surface air quality. An analysis of regional‐scale extreme aerosol events over the eastern United States is undertaken using output from the Modern‐Era Retrospective analysis for Research and Applications, version 2 (MERRA‐2) reanalysis and observations from the MODerate resolution Imaging Spectroradiometers (MODIS). Six extreme aerosol optical depth (AOD) events during 2003–2007, dominated by anthropogenic emissions and characterized by a regional scale extent, are identified and simulated using the Weather Research and Forecasting model coupled with Chemistry (WRF‐Chem) applied at 12 km resolution. Statistical analyses show output from WRF‐Chem during these events is generally negatively biased in terms of the mean AOD and PM2.5, but WRF‐Chem exhibits skill in capturing the peak AOD. WRF‐Chem also exhibits fidelity in reproducing the spatiotemporal characteristics of the extreme AOD events in intensity, location of centroid, propagation, duration, and their spatial extension. Considerable event‐to‐event variability in model skill in simulating spatial patterns of extreme events is observed, with the highest spatial correlation with MERRA‐2 AOD noted for events centered in the Midwest. Mean fractional bias in modeled peak AOD is minimized for the most intense events and for events centered over the southeastern USA. WRF‐Chem output is also negatively biased in downwelling shortwave radiation at the ground and specific humidity consistent with a positive bias in simulated precipitation relative to MERRA‐2.

 
more » « less
NSF-PAR ID:
10374891
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
126
Issue:
10
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Weather Research and Forecasting model with coupled Chemistry is used to study the impact of anthropogenic emission changes between 2005 and 2015 on historical extreme aerosol optical depth (AOD) events that occurred during 2003–2007 over the eastern USA. An ensemble of simulations is generated where individual and all combined emissions of SO2, NOx, and NH3are perturbed relative to the 2005 levels for three subregions (Midwest, Northeast, and Southeast). These simulations are used to quantify fractional changes in the spatial and temporal characteristics of mean and peak AOD and near‐surface particulate matter (PM2.5), as well as changes in radiative forcing. Simulated AOD exhibits a spatially averaged decrease of 39%–63% during the six extreme events in response to the combined perturbed emissions. The impact on near‐surface PM2.5concentrations is larger, with average decreases of ∼41%–69%. Peak AOD is reduced to below 1 in the perturbed simulations from initial values of 1.73–3.02 in the control runs driven by 2005 emissions. Radiative fluxes at the ground and top‐of‐the‐atmosphere exhibit considerably smaller and less consistent fractional changes across events, although changes in radiative fluxes during these extreme events are found to be larger than previously reported changes in seasonal mean values over the period 2005 to 2015.

     
    more » « less
  2. Abstract

    This paper examines the accuracy of Weather Research and Forecasting model coupled with Chemistry (WRF‐Chem) generated 72 hr fine particulate matter (PM2.5) forecasts in Delhi during the crop residue burning season of October‐November 2017 with respect to assimilation of the Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) retrievals, persistent fire emission assumption, and aerosol‐radiation interactions. The assimilation significantly pushes the model AOD and PM2.5toward the observations with the largest changes below 5 km altitude in the fire source regions (northeastern Pakistan, Punjab, and Haryana) as well as the receptor New Delhi. WRF‐Chem forecast with MODIS AOD assimilation, aerosol‐radiation feedback turned on, and real‐time fire emissions reduce the mean bias by 88–195 μg/m3(70–86%) with the largest improvement during the peak air pollution episode of 6–13 November 2017. Aerosol‐radiation feedback contributes ~21%, ~25%, and ~24% to reduction in mean bias of the first, second, and third days of PM2.5forecast. Persistence fire emission assumption is found to work really well, as the accuracy of PM2.5forecasts driven by persistent fire emissions was only 6% lower compared to those driven by real fire emissions. Aerosol‐radiation feedback extends the benefits of assimilating satellite AOD beyond PM2.5forecasts to surface temperature forecast with a reduction in the mean bias of 0.9–1.5°C (17–30%). These results demonstrate that air quality forecasting can benefit substantially from satellite AOD observations particularly in developing countries that lack resources to rapidly build dense air quality monitoring networks.

     
    more » « less
  3. Satellite remote sensing of aerosol optical depth (AOD) is essential for detection, characterization, and forecasting of wildfire smoke. In this work, we evaluate the AOD (550 nm) retrievals during the extreme wildfire events over the western U.S. in September 2020. Three products are analyzed, including the Moderate-resolution Imaging Spectroradiometers (MODIS) Multi-Angle Implementation of Atmospheric Correction (MAIAC) product collections C6.0 and C6.1, and the NOAA-20 Visible Infrared Imaging Radiometer (VIIRS) AOD from the NOAA Enterprise Processing System (EPS) algorithm. Compared with the Aerosol Robotic Network (AERONET) data, all three products show strong linear correlations with MAIAC C6.1 and VIIRS presenting overall low bias (<0.06). The accuracy of MAIAC C6.1 is found to be substantially improved with respect to MAIAC C6.0 that drastically underestimated AOD over thick smoke, which validates the effectiveness of updates made in MAIAC C6.1 in terms of an improved representation of smoke aerosol optical properties. VIIRS AOD exhibits comparable uncertainty with MAIAC C6.1 with a slight tendency of increased positive bias over the AERONET AOD range of 0.5–3.0. Averaging coincident retrievals from MAIAC C6.1 and VIIRS provides a lower root mean square error and higher correlation than for the individual products, motivating the benefit of blending these datasets. MAIAC C6.1 and VIIRS are further compared to provide insights on their retrieval strategy. When gridded at 0.1° resolution, MAIAC C6.1 and VIIRS provide similar monthly AOD distribution patterns and the latter exhibits a slightly higher domain average. On daily scale, over thick plumes near fire sources, MAIAC C6.1 reports more valid retrievals where VIIRS tends to have retrievals designated as low or medium quality, which tends to be due to internal quality checks. Over transported smoke near scattered clouds, VIIRS provides better retrieval coverage than MAIAC C6.1 owing to its higher spatial resolution, pixel-level processing, and less strict cloud masking. These results can be used as a guide for applications of satellite AOD retrievals during wildfire events and provide insights on future improvement of retrieval algorithms under heavy smoke conditions. 
    more » « less
  4. Abstract

    Long‐range aerosol transport is an important physical mechanism for ecological, biological, and hydrological elements of the earth system. Regarding the latter, regional climate models have no way of assimilating future aerosol concentrations, so dust aerosol emissions must be parameterized using local landscape and meteorological conditions. The purpose of this study is to evaluate the accuracy of different dust emission settings within the Weather Research and Forecasting model coupled with chemistry (WRF‐Chem) to facilitate future dynamical downscaling work. This study performs nine WRF‐Chem hindcasts, each utilizing a different dust emission configuration, from 1 March to 31 May 2015, coinciding with a Saharan air layer (SAL) dust outbreak during the 2015 Caribbean drought. WRF‐Chem aerosol optical depth (AOD) and Gálvez‐Davison Index (GDI), a convective forecasting parameter, are validated against analogous MODIS, AERONET, and ERA5 products. In aggregate, the GOCART dust emission scheme with Air Force Weather Agency modifications (GOCART‐AFWA) achieved the best balance between AOD and GDI accuracy when employing the default tuning constant (1.00). As the schemes emitted dust more aggressively, WRF‐Chem produced warming at 500 hPa, reducing GDI over the central and eastern Atlantic near the modeled dust trajectory. Though AOD was generally too low over the southwest Atlantic, the eastern Caribbean occupies a transition zone between negative and positive AOD biases where this field was hindcast with relative accuracy. Meanwhile, areas with positive AOD biases were associated with negative GDI biases (and vice versa) indicating the covariability between SAL dust loadings and thermodynamic conditions in the tropical north Atlantic.

     
    more » « less
  5. The month of August 2015 featured extensive wildfires in the Northwestern U.S. and no significant fires in Alaska and Canada. With the majority of carbonaceous aerosols (CA), including black carbon (BC) and brown carbon (BrC), over the U.S. dominated by emissions from Northwestern wildfires, this month presented a unique opportunity for testing wildfire BrC representation in the Weather Research and Forecasting model with chemistry (WRF-Chem). We performed parallel simulations that (1) did not account for BrC absorption, (2) accounted for BrC absorption, and (3) accounted for BrC absorption as well as its decay due to photobleaching. We used a comprehensive set of extensive and pseudo-intensive optical properties, namely the aerosol optical depth (AOD), aerosol absorption optical depth (AAOD), absorption Ångström exponent (AAE), and single scattering albedo (SSA) to constrain the model output against observations from the Aerosol Robotic Network (AERONET). We found that accounting for BrC absorption and photobleaching resulted in the best agreement with observations in terms of aerosol absorption (AAOD and AAE). However, the model severely underestimated AOD and SSA compared to observations. We attributed this discrepancy to missing scattering due to missing secondary organic aerosol (SOA) formation from wildfire emissions in the model. To test this hypothesis, we applied a zeroth-order representation of wildfire SOA, which significantly improved the AOD and SSA model-observation comparison. Our findings indicate that BrC absorption, the decay of its absorption due to photobleaching, as well as SOA formation should be accounted for in chemical transport models in order to accurately represent CA emissions from wildfires. 
    more » « less