skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeled Atmospheric Optical and Thermodynamic Responses to an Exceptional Trans‐Atlantic Dust Outbreak
Abstract Long‐range aerosol transport is an important physical mechanism for ecological, biological, and hydrological elements of the earth system. Regarding the latter, regional climate models have no way of assimilating future aerosol concentrations, so dust aerosol emissions must be parameterized using local landscape and meteorological conditions. The purpose of this study is to evaluate the accuracy of different dust emission settings within the Weather Research and Forecasting model coupled with chemistry (WRF‐Chem) to facilitate future dynamical downscaling work. This study performs nine WRF‐Chem hindcasts, each utilizing a different dust emission configuration, from 1 March to 31 May 2015, coinciding with a Saharan air layer (SAL) dust outbreak during the 2015 Caribbean drought. WRF‐Chem aerosol optical depth (AOD) and Gálvez‐Davison Index (GDI), a convective forecasting parameter, are validated against analogous MODIS, AERONET, and ERA5 products. In aggregate, the GOCART dust emission scheme with Air Force Weather Agency modifications (GOCART‐AFWA) achieved the best balance between AOD and GDI accuracy when employing the default tuning constant (1.00). As the schemes emitted dust more aggressively, WRF‐Chem produced warming at 500 hPa, reducing GDI over the central and eastern Atlantic near the modeled dust trajectory. Though AOD was generally too low over the southwest Atlantic, the eastern Caribbean occupies a transition zone between negative and positive AOD biases where this field was hindcast with relative accuracy. Meanwhile, areas with positive AOD biases were associated with negative GDI biases (and vice versa) indicating the covariability between SAL dust loadings and thermodynamic conditions in the tropical north Atlantic.  more » « less
Award ID(s):
1831952
PAR ID:
10449559
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
126
Issue:
5
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. ​​​​​​​Each summer, the Saharan Air Layer (SAL) transports massive amounts of mineral dust across the Atlantic Ocean, affecting weather, climate, and public health over large areas. Despite the considerable impacts of African dust, the causes and impacts of extreme trans-Atlantic African dust events are not fully understood. The “Godzilla” trans-Atlantic dust event of 2020 has been extensively studied, but little is known about other similar events. Here, we examine the June 2015 event, the second strongest trans-Atlantic African dust event that occurred during the summers from 2003–2022. This event was characterized by moderately high dust emissions over western North Africa and an extremely high aerosol optical depth (AOD) over the tropical North Atlantic. The high dust loading over the Atlantic is associated with atmospheric circulation extremes similar to the Godzilla event. Both the African easterly jet (AEJ) and Caribbean low-level jet (CLLJ) have greatly intensified, along with a westward extension of the North Atlantic subtropical high (NASH), all of which favor the westward transport of African dust. The enhanced dust emissions are related to anomalously strong surface winds in dust source regions and reduced vegetation density and soil moisture across the northern Sahel. The dust plume reduced net surface shortwave radiation over the eastern tropical North Atlantic by about 25 W m−2 but increased net longwave flux by about 3 W m−2. In contrast to the Godzilla event, the 2015 event had minor air quality impacts on the US, partially due to the extremely intensified CLLJ that dispersed the dust plume towards the Pacific. 
    more » « less
  2. null (Ed.)
    Abstract In groundwater-limited settings, such as Puerto Rico and other Caribbean islands, societal, ecological, and agricultural water needs depend on regular rainfall. Though long-range numerical weather predication models explicitly predict precipitation, such quantitative precipitation forecasts (QPF) critically failed to detect the historic 2015 Caribbean drought. Consequently, this work examines the feasibility of developing a drought early warning tool using the Gálvez–Davison index (GDI), a tropical convective potential index, derived from the Climate Forecast System, version 2 (CFSv2). Drought forecasts are focused on Puerto Rico’s early rainfall season (ERS; April–July), which is susceptible to intrusions of strongly stable Saharan air and represents the largest source of hydroclimatic variability for the island. A fully coupled atmosphere–ocean–land model, the CFSv2 can plausibly detect the transatlantic advection of low-GDI Saharan air with multimonth lead times. The mean ERS GDI is calculated from semidaily CFSv2 forecasts beginning 1 January of each year between 2012 and 2018 and monitored as the initialization approaches 1 April. The CFSv2 demonstrates a broad region of statistically significant correlations with observed GDI across the eastern Caribbean up to 30 days prior to the ERS. During 2015, the CFSv2 forecast a low-GDI tongue extending across the Atlantic toward the Caribbean with 60–90 days lead time and placed Puerto Rico’s 2015 ERS beneath the 15th percentile of all 1982–2018 ERS forecasts with up to 30 days lead time. A preliminary GDI-based QPF tool tested herein is a statistically significant improvement over climatology for the driest years. 
    more » « less
  3. The Saharan Air Layer (SAL) is a hot, dry, and dust‐laden feature that advects large concentrations of dust across the Atlantic annually to destination regions in the Americas and Caribbean. However, recent work has suggested the SAL may be a contributing factor to high‐impact drought in the Caribbean basin. While the SAL's characteristic dust loadings have been the focus of much previous research, fewer efforts have holistically engaged the co‐evolution of the dust plume, its associated convective environment, and resultant rainfall in Caribbean islands. This study employs a self‐organizing map (SOM) classification to identify the common trans‐Atlantic dust transport typologies associated with the SAL during June and July 1981–2020. Using the column‐integrated dust flux, termed integrated dust transport (IDT), from MERRA‐2 reanalysis as a SAL proxy, the SOM resolved two common patterns which resembled trans‐Atlantic SAL outbreaks. During these events, the convective environment associated with the SAL, as inferred by the Gálvez‐Davison Index, becomes less conducive to precipitation as the SAL migrates further away from the west African coast. Simultaneously, days with IDT patterns grouped to the SAL outbreak typologies demonstrate island‐wide negative precipitation anomalies in Puerto Rico. The SOM's most distinctive SAL outbreak pattern has experienced a statistically significant increase during the 40‐year study period, becoming roughly 10% more frequent over that time. These results are relevant for both climate scientists and water managers wishing to better anticipate Caribbean droughts on both the long and short terms. 
    more » « less
  4. Abstract In June 2020, the tropical Atlantic and the Caribbean Basin were affected by a series of African dust outbreaks unprecedented in size and intensity. These events, informally named “Godzilla”, coincided with CALIMA, a large field campaign, offering a rare opportunity to assess the impact of African dust on air quality in the Greater Caribbean Basin. Network measurements of respirable particles (i.e., PM10and PM2.5) showed that dust significantly degraded regional air quality and increased the risk to public health in the Caribbean, the southern United States, northern South America, and Central America. CALIMA examined the meteorological context of Godzilla dust events over North Africa and how these conditions might relate to the greatly increased dust emissions and enhanced transport to the Americas. Godzilla was linked to strong pressure anomalies over West Africa, resulting in a large-scale geostrophic wind anomaly at 700 hPa over North Africa. We used surface-based and columnar measurements to test the performance of two frequently used aerosol forecast models: the NASA GEOS and WRF-Chem models. The models showed some skills, but differed substantially between their forecasts, suggesting large uncertainties in these forecasts that are critical for issuing early warnings of health-threatening dust events. Our results demonstrate the value of an integrated approach in characterizing the spatial and temporal variability of African dust transport and assessing its impact on regional air quality. Future studies are needed to improve models and to track the long-term changes in dust transport from Africa under a changing climate. 
    more » « less
  5. Abstract Dust transported from rangelands of the Southwestern United States (US) to mountain snowpack in the Upper Colorado River Basin during spring (March‐May) forces earlier and faster snowmelt, which creates problems for water resources and agriculture. To better understand the drivers of dust events, we investigated large‐scale meteorology responsible for organizing two Southwest US dust events from two different dominant geographic locations: (a) the Colorado Plateau and (b) the northern Chihuahuan Desert. High‐resolution Weather Research and Forecasting coupled with Chemistry model (WRF‐Chem) simulations with the Air Force Weather Agency dust emission scheme incorporating a MODIS albedo‐based drag‐partition was used to explore land surface‐atmosphere interactions driving two dust events. We identified commonalities in their meteorological setups. The meteorological analyses revealed that Polar and Sub‐tropical jet stream interaction was a common upper‐level meteorological feature before each of the two dust events. When the two jet streams merged, a strong northeast‐directed pressure gradient upstream and over the source areas resulted in strong near‐surface winds, which lifted available dust into the atmosphere. Concurrently, a strong mid‐tropospheric flow developed over the dust source areas, which transported dust to the San Juan Mountains and southern Colorado snowpack. The WRF‐Chem simulations reproduced both dust events, indicating that the simulations represented the dust sources that contributed to dust‐on‐snow events reasonably well. The representativeness of the simulated dust emission and transport in different geographic and meteorological conditions with our use of albedo‐based drag partition provides a basis for additional dust‐on‐snow simulations to assess the hydrologic impact in the Southwest US. 
    more » « less