skip to main content


Title: Limitations of the Q 10 Coefficient for Quantifying Temperature Sensitivity of Anaerobic Organic Matter Decomposition: A Modeling Based Assessment
Abstract

TheQ10coefficient is the ratio of reaction rates at two temperatures 10°C apart, and has been widely applied to quantify the temperature sensitivity of organic matter decomposition. However, biogeochemists and ecologists have long recognized that a constantQ10coefficient does not describe the temperature sensitivity of organic matter decomposition accurately. To examine the consequences of the constantQ10assumption, we built a biogeochemical reaction model to simulate anaerobic organic matter decomposition in peatlands in the Upper Peninsula of Michigan, USA, and compared the simulation results to the predictions withQ10coefficients. By accounting for the reactions of extracellular enzymes, mesophilic fermenting and methanogenic microbes, and their temperature responses, the biogeochemical reaction model reproduces the observations of previous laboratory incubation experiments, including the temporal variations in the concentrations of dissolved organic carbon, acetate, dihydrogen, carbon dioxide, and methane, and confirms that fermentation limits the progress of anaerobic organic matter decomposition. The modeling results illustrate the oversimplification inherent in the constantQ10assumption and how the assumption undermines the kinetic prediction of anaerobic organic matter decomposition. In particular, the model predicts that between 5°C and 30°C, the decomposition rate increases almost linearly with increasing temperature, which stands in sharp contrast to the exponential relationship given by theQ10coefficient. As a result, the constantQ10approach tends to underestimate the rates of organic matter decomposition within the temperature ranges whereQ10values are determined, and overestimate the rates outside the temperature ranges. The results also show how biogeochemical reaction modeling, combined with laboratory experiments, can help uncover the temperature sensitivity of organic matter decomposition arising from underlying catalytic mechanisms.

 
more » « less
Award ID(s):
1636815 1753470
NSF-PAR ID:
10374892
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
126
Issue:
8
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Q10 coefficient is the ratio of reaction rates at two temperatures 10°C apart, and has been widely applied to quantify the temperature sensitivity of organic matter decomposition. However, biogeochemists and ecologists have long recognized that a constant Q10 coefficient does not describe the temperature sensitivity of organic matter decomposition accurately. To examine the consequences of the constant Q10 assumption, we built a biogeochemical reaction model to simulate anaerobic organic matter decomposition in peatlands in the Upper Peninsula of Michigan, USA, and compared the simulation results to the predictions with Q10 coefficients. By accounting for the reactions of extracellular enzymes, mesophilic fermenting and methanogenic microbes, and their temperature responses, the biogeochemical reaction model reproduces the observations of previous laboratory incubation experiments, including the temporal variations in the concentrations of dissolved organic carbon, acetate, dihydrogen, carbon dioxide, and methane, and confirms that fermentation limits the progress of anaerobic organic matter decomposition. The modeling results illustrate the oversimplification inherent in the constant Q10 assumption and how the assumption undermines the kinetic prediction of anaerobic organic matter decomposition. In particular, the model predicts that between 5°C and 30°C, the decomposition rate increases almost linearly with increasing temperature, which stands in sharp contrast to the exponential relationship given by the Q10 coefficient. As a result, the constant Q10 approach tends to underestimate the rates of organic matter decomposition within the temperature ranges where Q10 values are determined, and overestimate the rates outside the temperature ranges. The results also show how biogeochemical reaction modeling, combined with laboratory experiments, can help uncover the temperature sensitivity of organic matter decomposition arising from underlying catalytic mechanisms. 
    more » « less
  2. Abstract

    Quantifying the temperature sensitivity of methane (CH4) production is crucial for predicting how wetland ecosystems will respond to climate warming. Typically, the temperature sensitivity (often quantified as a Q10value) is derived from laboratory incubation studies and then used in biogeochemical models. However, studies report wide variation in incubation-inferred Q10values, with a large portion of this variation remaining unexplained. Here we applied observations in a thawing permafrost peatland (Stordalen Mire) and a well-tested process-rich model (ecosys) to interpret incubation observations and investigate controls on inferred CH4production temperature sensitivity. We developed a field-storage-incubation modeling approach to mimic the full incubation sequence, including field sampling at a particular time in the growing season, refrigerated storage, and laboratory incubation, followed by model evaluation. We found that CH4production rates during incubation are regulated by substrate availability and active microbial biomass of key microbial functional groups, which are affected by soil storage duration and temperature. Seasonal variation in substrate availability and active microbial biomass of key microbial functional groups led to strong time-of-sampling impacts on CH4production. CH4production is higher with less perturbation post-sampling, i.e. shorter storage duration and lower storage temperature. We found a wide range of inferred Q10values (1.2–3.5), which we attribute to incubation temperatures, incubation duration, storage duration, and sampling time. We also show that Q10values of CH4production are controlled by interacting biological, biochemical, and physical processes, which cause the inferred Q10values to differ substantially from those of the component processes. Terrestrial ecosystem models that use a constant Q10value to represent temperature responses may therefore predict biased soil carbon cycling under future climate scenarios.

     
    more » « less
  3. Abstract

    Accurate representation of temperature sensitivity (Q10) of soil microbial activity across time is critical for projecting soil CO2efflux. As microorganisms mediate soil carbon (C) loss via exo‐enzyme activity and respiration, we explore temperature sensitivities of microbial exo‐enzyme activity and respiratory CO2loss across time and assess mechanisms associated with these potential changes in microbial temperature responses. We collected soils along a latitudinal boreal forest transect with different temperature regimes (long‐term timescale) and exposed these soils to laboratory temperature manipulations at 5, 15, and 25°C for 84 days (short‐term timescale). We quantified temperature sensitivity of microbial activity per g soil and per g microbial biomass at days 9, 34, 55, and 84, and determined bacterial and fungal community structure before the incubation and at days 9 and 84. All biomass‐specific rates exhibited temperature sensitivities resistant to change across short‐ and long‐term timescales (meanQ10 = 2.77 ± 0.25, 2.63 ± 0.26, 1.78 ± 0.26, 2.27 ± 0.25, 3.28 ± 0.44, 2.89 ± 0.55 for β‐glucosidase,N‐acetyl‐β‐d‐glucosaminidase, leucine amino peptidase, acid phosphatase, cellobiohydrolase, and CO2efflux, respectively). In contrast, temperature sensitivity of soil mass‐specific rates exhibited either resilience (theQ10value changed and returned to the original value over time) or resistance to change. Regardless of the microbial flux responses, bacterial and fungal community structure was susceptible to change with temperature, significantly differing with short‐ and long‐term exposure to different temperature regimes. Our results highlight that temperature responses of microbial resource allocation to exo‐enzyme production and associated respiratory CO2loss per unit biomass can remain invariant across time, and thus, that vulnerability of soil organic C stocks to rising temperatures may persist in the long term. Furthermore, resistant temperature sensitivities of biomass‐specific rates in spite of different community structures imply decoupling of community constituents and the temperature responses of soil microbial activities.

     
    more » « less
  4. Abstract

    The magnitude and direction of carbon cycle feedbacks under climate warming remain uncertain due to insufficient knowledge about the temperature sensitivities of soil microbial processes. Enzymatic rates could increase at higher temperatures, but this response could change over time if soil microbes adapt to warming. We used the Arrhenius relationship, biochemical transition state theory, and thermal physiology theory to predict the responses of extracellular enzymeVmaxandKmto temperature. Based on these concepts, we hypothesized thatVmaxandKmwould correlate positively with each other and show positive temperature sensitivities. For enzymes from warmer environments, we expected to find lowerVmax,Km, andKmtemperature sensitivity but higherVmaxtemperature sensitivity. We tested these hypotheses with isolates of the filamentous fungusNeurospora discretacollected from around the globe and with decomposing leaf litter from a warming experiment in Alaskan boreal forest. ForNeurosporaextracellular enzymes,VmaxQ10ranged from 1.48 to 2.25, andKmQ10ranged from 0.71 to 2.80. In agreement with theory,VmaxandKmwere positively correlated for some enzymes, andVmaxdeclined under experimental warming in Alaskan litter. However, the temperature sensitivities ofVmaxandKmdid not vary as expected with warming. We also found no relationship between temperature sensitivity ofVmaxorKmand mean annual temperature of the isolation site forNeurosporastrains. DecliningVmaxin the Alaskan warming treatment implies a short‐term negative feedback to climate change, but theNeurosporaresults suggest that climate‐driven changes in plant inputs and soil properties are important controls on enzyme kinetics in the long term. Our empirical data on enzymeVmax,Km, and temperature sensitivities should be useful for parameterizing existing biogeochemical models, but they reveal a need to develop new theory on thermal adaptation mechanisms.

     
    more » « less
  5. Abstract

    Reflooding formerly drained peatlands has been proposed as a means to reduce losses of organic matter and sequester soil carbon for climate change mitigation, but a renewal of high methane emissions has been reported for these ecosystems, offsetting mitigation potential. Our ability to interpret observed methane fluxes in reflooded peatlands and make predictions about future flux trends is limited due to a lack of detailed studies of methanogenic processes. In this study we investigate methanogenesis in a reflooded agricultural peatland in the Sacramento Delta, California. We use the stable‐and radio‐carbon isotopic signatures of wetland sediment methane, ecosystem‐scale eddy covariance flux observations, and laboratory incubation experiments, to identify which carbon sources and methanogenic production pathways fuel methanogenesis and how these processes are affected by vegetation and seasonality. We found that the old peat contribution to annual methane emissions was large (~30%) compared to intact wetlands, indicating a biogeochemical legacy of drainage. However, fresh carbon and the acetoclastic pathway still accounted for the majority of methanogenesis throughout the year. Although temperature sensitivities for bulk peat methanogenesis were similar between open‐water (Q10 = 2.1) and vegetated (Q10 = 2.3) soils, methane production from both fresh and old carbon sources showed pronounced seasonality in vegetated zones. We conclude that high methane emissions in restored wetlands constitute a biogeochemical trade‐off with contemporary carbon uptake, given that methane efflux is fueled primarily by fresh carbon inputs.

     
    more » « less