skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


Title: A Case Study of Nonresonant Mode 3‐s ULF Waves Observed by MMS
Abstract The nature of the 3‐s ultralow frequency (ULF) wave in the Earth's foreshock region and the associated wave‐particle interaction are not yet well understood. We investigate the 3‐s ULF waves using Magnetospheric Multiscale (MMS) observations. By combining the plasma rest frame wave properties obtained from multiple methods with the instability analysis based on the velocity distribution in the linear wave stage, the ULF wave is determined to be due to the ion/ion nonresonant mode instability. The interaction between the wave and ions is analyzed using the phase relationship between the transverse wave fields and ion velocities and using the longitudinal momentum equation. During the stage when ULF waves have sinusoidal waveforms up to |dB|/|B0| ~ 3, wheredBis the wave magnetic field andB0is the background magnetic field, the wave electric fields perpendicular toB0do negative work to solar wind ions; alongB0, a longitudinal electric field develops, but theV × Bforce is stronger and leads to solar wind ion deceleration. During the same wave stage, the backstreaming beam ions gain energy from the transverse wave fields and get deceleration alongB0by the longitudinal electric field. The ULF wave leads to electron heating, preferentially in the direction perpendicular to the local magnetic field. Secondary waves are generated within the ULF waveforms, including whistler waves near half of the electron cyclotron frequency, high‐frequency electrostatic waves, and magnetosonic whistler waves. The work improves the understanding of the nature of 3‐s ULF waves and the associated wave‐particle interaction.  more » « less
Award ID(s):
2010231
PAR ID:
10374912
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
125
Issue:
11
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present the results of numerical studies of the whistler wave parametric decay instability in the system with the suppressed Landau damping of ion acoustic waves (IAWs) based on the self-consistent Darwin particle-in-cell (PIC) model. It has been demonstrated that a monochromatic whistler wave launched along the background magnetic field couples to a counter-propagating whistler mode and co-propagating ion acoustic mode. The coupling of the electromagnetic mode to the electrostatic mode is guided by a ponderomotive force that forms spatio-temporal beat patterns in the longitudinal electric field generated by the counter-propagating whistler and the pump whistler wave. The threshold amplitude for the instability is determined to be δB w / B 0 = 0.028 and agrees with a prediction for the ion decay instability: δB w / B 0 = 0.042 based on the linear kinetic damping rates, and δB w / B 0 = 0.030 based on the simulation derived damping rates. Increasing the amplitude of the pump whistler wave, the secondary and tertiary decay thresholds are reached, and cascading parametric decay from the daughter whistler modes is observed. At the largest amplitude ( δB w / B 0 ∼ 0.1) the primary IAW evolves into a short-lived and highly nonlinear structure. The observed dependence of the IAW growth rate on the pump wave amplitude agrees with the expected trend; however, quantitatively, the growth rate of the IAW is larger than expected from theoretical predictions. We discuss the relevant space regimes where the instability could be observed and extensions to the parametric coupling of whistler waves with the electron acoustic wave (EAW). 
    more » « less
  2. Abstract We present a statistical analysis of >2,100 bipolar electrostatic solitary waves (ESWs) collected from 10 quasi‐perpendicular Earth's bow shock crossings by Magnetospheric Multiscale spacecraft. We developed and implemented a correction procedure for reconstruction of actual electric fields, velocities, and other properties of ESW, whose spatial scales are typically comparable with or smaller than spatial distance between voltage‐sensitive probes. We found that more than 95% of the ESW are of negative polarity with amplitudes typically below a few Volts and 0.1Te(5–30 V or 0.1–0.3Tefor a few percent of ESW), spatial scales of 10–100 m orλD–10λD, and velocities from a few tens to a few hundred km/s that is on the order of local ion‐acoustic speed. The spatial scales of ESW are correlated with local Debye lengthλD. The ESW have electric fields generally oblique to magnetic field and they propagate highly oblique to shock normalN; more than 80% of ESW propagate within 30° of the shock planeLM. In the shock plane, ESW typically propagates within a few tens of degrees of local magnetic field projectionBLMand preferentially opposite toN × BLM. We argue that the ESW of negative polarity are ion holes produced by ion‐ion streaming instabilities. We estimate ion hole lifetimes to be 10–100 ms, or 1–10 km in terms of traveling distance. The revealed statistical properties will be useful for quantitative studies of electron thermalization in the Earth's bow shock. 
    more » « less
  3. Abstract Electron cyclotron waves (whistlers) are commonly observed in plasmas near Earth and the solar wind. In the presence of nonlinear mirror modes, bursts of whistlers, usually called lion roars, have been observed within low magnetic field regions associated with these modes. In the intracluster medium (ICM) of galaxy clusters, the excitation of the mirror instability is expected, but it is not yet clear whether electron and ion cyclotron (IC) waves can also be present under conditions where gas pressure dominates over magnetic pressure (highβ). In this work, we perform fully kinetic particle-in-cell simulations of a plasma subject to a continuous amplification of the mean magnetic fieldB(t) to study the nonlinear stages of the mirror instability and the ensuing excitation of whistler and IC waves under ICM conditions. Once mirror modes reach nonlinear amplitudes, both whistler and IC waves start to emerge simultaneously, with subdominant amplitudes, propagating in low-Bregions, quasi-parallel toB(t). We show that the underlying source of excitation is the pressure anisotropy of electrons and ions trapped in mirror modes with loss-cone-type distributions. We also observe that IC waves play an essential role in regulating the ion pressure anisotropy at nonlinear stages. We argue that whistler and IC waves are a concomitant feature at late stages of the mirror instability even at highβ, and therefore, expected to be present in astrophysical environments like the ICM. We discuss the implications of our results for collisionless heating and dissipation of turbulence in the ICM. 
    more » « less
  4. Context.Whistler waves are electromagnetic waves produced by electron-driven instabilities, which in turn can reshape the electron distributions via wave–particle interactions. In the solar wind they are one of the main candidates for explaining the scattering of the strahl electron population into the halo at increasing radial distances from the Sun and for subsequently regulating the solar wind heat flux. However, it is unclear what type of instability dominates to drive whistler waves in the solar wind. Aims.Our goal is to study whistler wave parameters in the young solar wind sampled by Parker Solar Probe (PSP). The wave normal angle (WNA) in particular is a key parameter to discriminate between the generation mechanisms of these waves. Methods.We analyzed the cross-spectral matrices of magnetic field fluctuations measured by the search-coil magnetometer (SCM) and processed by the Digital Fields Board (DFB) from the FIELDS suite during PSP’s first perihelion. Results.Among the 2701 wave packets detected in the cross-spectra, namely individual bins in time and frequency, most were quasi-parallel to the background magnetic field; however, a significant part (3%) of the observed waves had oblique (> 45°) WNA. The validation analysis conducted with the time series waveforms reveal that this percentage is a lower limit. Moreover, we find that about 64% of the whistler waves detected in the spectra are associated with at least one magnetic dip. Conclusions.We conclude that magnetic dips provide favorable conditions for the generation of whistler waves. We hypothesize that the whistlers detected in magnetic dips are locally generated by the thermal anisotropy as quasi-parallel and can gain obliqueness during their propagation. We finally discuss the implications of our results for the scattering of the strahl in the solar wind. 
    more » « less
  5. Abstract Collisionless low-Mach-number shocks are abundant in astrophysical and space plasma environments, exhibiting complex wave activity and wave–particle interactions. In this paper, we present 2D Particle-in-Cell (PIC) simulations of quasi-perpendicular nonrelativistic (vsh≈ (5500–22000) km s−1) low-Mach-number shocks, with a specific focus on studying electrostatic waves in the shock ramp and precursor regions. In these shocks, an ion-scale oblique whistler wave creates a configuration with two hot counterstreaming electron beams, which drive unstable electron acoustic waves (EAWs) that can turn into electrostatic solitary waves (ESWs) at the late stage of their evolution. By conducting simulations with periodic boundaries, we show that the EAW properties agree with linear dispersion analysis. The characteristics of ESWs in shock simulations, including their wavelength and amplitude, depend on the shock velocity. When extrapolated to shocks with realistic velocities (vsh≈ 300 km s−1), the ESW wavelength is reduced to one-tenth of the electron skin depth and the ESW amplitude is anticipated to surpass that of the quasi-static electric field by more than a factor of 100. These theoretical predictions may explain a discrepancy, between PIC and satellite measurements, in the relative amplitude of high- and low-frequency electric field fluctuations. 
    more » « less