We study the parametric decay instability of parallel-propagating Alfvén waves in a low-beta plasma using one-dimensional fully kinetic simulations. We focus for the first time on the conversion of the energy stored in the initial Alfvén wave into particle internal energy, and on its partition between particle species. We show that compressible fluctuations generated by the decay of the pump wave into a secondary ion-acoustic mode and a reflected Alfvén wave contribute to the gain of internal energy via two distinct mechanisms. First, the ion-acoustic mode leads nonlinearly to proton trapping and proton phase-space mixing, in agreement with previous work based on hybrid simulations. Second, during the nonlinear stage, a compressible front of the fast type develops at the steepened edge of the backward Alfvén wave leading to a field-aligned proton beam propagating backwards at the Alfvén speed. We find that parametric decay heats preferentially protons, which gain approximately 50 % of the pump wave energy in the form of internal energy. However, we find that electrons are also energized and that they contribute to the total energy balance by gaining 10 % of the pump wave energy. By investigating energy partition and particle heating during parametric decay, our results contribute to the determination of the role of compressible and kinetic effects in wave-driven models of the solar wind.
- Award ID(s):
- 1914670
- NSF-PAR ID:
- 10416349
- Date Published:
- Journal Name:
- Frontiers in Astronomy and Space Sciences
- Volume:
- 9
- ISSN:
- 2296-987X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
With the support of hybrid-kinetic simulations and analytic theory, we describe the nonlinear behaviour of long-wavelength non-propagating (NP) modes and fast magnetosonic waves in high- $\beta$ collisionless plasmas, with particular attention to their excitation of and reaction to kinetic micro-instabilities. The perpendicularly pressure balanced polarization of NP modes produces an excess of perpendicular pressure over parallel pressure in regions where the plasma $\beta$ is increased. For mode amplitudes $|\delta B/B_0| \gtrsim 0.3$ , this excess excites the mirror instability. Particle scattering off these micro-scale mirrors frustrates the nonlinear saturation of transit-time damping, ensuring that large-amplitude NP modes continue their decay to small amplitudes. At asymptotically large wavelengths, we predict that the mirror-induced scattering will be large enough to interrupt transit-time damping entirely, isotropizing the pressure perturbations and morphing the collisionless NP mode into the magnetohydrodynamic (MHD) entropy mode. In fast waves, a fluctuating pressure anisotropy drives both mirror and firehose instabilities when the wave amplitude satisfies $|\delta B/B_0| \gtrsim 2\beta ^{-1}$ . The induced particle scattering leads to delayed shock formation and MHD-like wave dynamics. Taken alongside prior work on self-interrupting Alfvén waves and self-sustaining ion-acoustic waves, our results establish a foundation for new theories of electromagnetic turbulence in low-collisionality, high- $\beta$ plasmas such as the intracluster medium, radiatively inefficient accretion flows and the near-Earth solar wind.more » « less
-
Abstract Based on observations from the Magnetospheric Multiscale mission, this study presents an analysis of a short large‐amplitude magnetic structures (SLAMS) event with simultaneous occurrence of low‐ and high‐frequency magnetosonic whistler waves. It was found that low‐frequency magnetosonic whistler waves around the lower‐hybrid frequency emerge in the presence of solar wind ions and local low‐energy ions in the trailing region of SLAMS. Additionally, counter‐propagating whistler waves (the high‐frequency branch of the magnetosonic whistler wave) are observed within SLAMS, coinciding with a perpendicular temperature anisotropy in the electron population. Instability analyses demonstrate that these low‐frequency waves are induced by the two‐stream instability associated with the cross‐field relative velocity between low‐energy ions and electrons, while whistler waves are locally generated by the whistler anisotropy instability. Our results shed light on the impact of SLAMS on particle and wave dynamics in the terrestrial foreshock.
-
Abstract The nature of the 3‐s ultralow frequency (ULF) wave in the Earth's foreshock region and the associated wave‐particle interaction are not yet well understood. We investigate the 3‐s ULF waves using Magnetospheric Multiscale (MMS) observations. By combining the plasma rest frame wave properties obtained from multiple methods with the instability analysis based on the velocity distribution in the linear wave stage, the ULF wave is determined to be due to the ion/ion nonresonant mode instability. The interaction between the wave and ions is analyzed using the phase relationship between the transverse wave fields and ion velocities and using the longitudinal momentum equation. During the stage when ULF waves have sinusoidal waveforms up to |
dB |/|B 0| ~ 3, wheredB is the wave magnetic field andB 0is the background magnetic field, the wave electric fields perpendicular to 0do negative work to solar wind ions; alongB 0, a longitudinal electric field develops, but theB force is stronger and leads to solar wind ion deceleration. During the same wave stage, the backstreaming beam ions gain energy from the transverse wave fields and get deceleration alongV ×B 0by the longitudinal electric field. The ULF wave leads to electron heating, preferentially in the direction perpendicular to the local magnetic field. Secondary waves are generated within the ULF waveforms, including whistler waves near half of the electron cyclotron frequency, high‐frequency electrostatic waves, and magnetosonic whistler waves. The work improves the understanding of the nature of 3‐s ULF waves and the associated wave‐particle interaction.B -
Abstract Parker Solar Probe (PSP) observed predominately Alfvénic fluctuations in the solar wind near the Sun where the magnetic field tends to be radially aligned. In this paper, two magnetic-field-aligned solar wind flow intervals during PSP’s first two orbits are analyzed. Observations of these intervals indicate strong signatures of parallel/antiparallel-propagating waves. We utilize multiple analysis techniques to extract the properties of the observed waves in both magnetohydrodynamic (MHD) and kinetic scales. At the MHD scale, outward-propagating Alfvén waves dominate both intervals, and outward-propagating fast magnetosonic waves present the second-largest contribution in the spectral energy density. At kinetic scales, we identify the circularly polarized plasma waves propagating near the proton gyrofrequency in both intervals. However, the sense of magnetic polarization in the spacecraft frame is observed to be opposite in the two intervals, although they both possess a sunward background magnetic field. The ion-scale plasma wave observed in the first interval can be either an inward-propagating ion cyclotron wave (ICW) or an outward-propagating fast-mode/whistler wave in the plasma frame, while in the second interval it can be explained as an outward ICW or inward fast-mode/whistler wave. The identification of the exact kinetic wave mode is more difficult to confirm owing to the limited plasma data resolution. The presence of ion-scale waves near the Sun suggests that ion cyclotron resonance may be one of the ubiquitous kinetic physical processes associated with small-scale magnetic fluctuations and kinetic instabilities in the inner heliosphere.more » « less