skip to main content


Title: Characterizing the Complex Two N‐Wave Ionospheric Signature of the 2016 Kaikoura Earthquake
Abstract

Major earthquakes (>∼6.5 Mw) can generate observable waves which propagate not only through the Earth but also through the Earth's ionosphere. These traveling ionospheric disturbances can be observed using multifrequency GPS receivers to measure the ensuing perturbations in the Total Electron Content of the ionosphere. Assisted by a statistical approach we developed to indicate the occurrence of a significant TEC perturbation from the normal background behavior, we detect a traveling ionospheric disturbance generated by the 2016 7.8MwKaikoura earthquake occurring in New Zealand on the 13th of November. The disturbance was detected ∼8 min after the earthquake, propagating toward the equator at ∼1 km/s with a peak‐to‐peak amplitude of ∼0.22 Total Electron Content units. The coseismic waveform exhibits complex structure unlike that of the expected N‐wave for coseismic ionospheric disturbances, with observations of oscillations with 4‐min periodicity and of two N‐waves. This observed complexity in the ionosphere likely reflects the impact of the complex, multifault structure of the earthquake.

 
more » « less
NSF-PAR ID:
10374932
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
123
Issue:
12
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Medium‐scale Traveling Ionospheric Disturbances (MSTIDs) are prominent and ubiquitous features of the mid‐latitude ionosphere, and are observed in Super Dual Auroral Radar Network (SuperDARN) and high‐resolution Global Navigational Satellite Service (GNSS) Total Electron Content (TEC) data. The mechanisms driving these MSTIDs are an open area of research, especially during geomagnetic storms. Previous studies have demonstrated that nightside MSTIDs are associated with an electrodynamic instability mechanism like Perkins, especially during geomagnetically quiet conditions. However, dayside MSTIDs are often associated with atmospheric gravity waves. Very few studies have analyzed the mechanisms driving MSTIDs during strong geomagnetic storms at mid‐latitudes. In this study, we present mid‐latitude MSTIDs observed in de‐trended GNSS TEC data and SuperDARN radars over the North American sector, during a geomagnetic storm (peakKpreaching 9) on 7–8 September 2017. In SuperDARN, MSTIDs were observed in ionospheric backscatter with Line of Sight (LOS) velocities exceeding 800 m/s. Additionally, radar LOS velocities oscillated with amplitudes reaching ±500 m/s as the MSTIDs passed through the fields‐of‐view. In detrended TEC, these MSTIDs produced perturbations reaching ∼50 percent of background TEC magnitude. The MSTIDs were observed to propagate in the westward/south‐westward direction with a time period of ∼15 min. Projecting de‐trended GNSS TEC data along SuperDARN beams showed that enhancements in TEC were correlated with enhancements in SuperDARN SNR and positive LOS velocities. Finally, SuperDARN LOS velocities systematically switched polarities between the crests and the troughs of the MSTIDs, indicating the presence of polarization electric fields and an electrodynamic instability process during these MSTIDs.

     
    more » « less
  2. Abstract

    Solar flares provide strong impulsive radiation and energy injection to the sunlit upper atmosphere. The impact on the ionosphere is immense in spatial scale, and therefore, it is not immediately evident if dramatically elevated neutral heating can lead to excitation of acoustic gravity waves. Using primary observations from Global Navigation Satellite System differential TEC (total electron content) over the continental United States, this paper presents postflare ionospheric observations associated with three X‐class flares on 6, 7, and 10 September 2017. Postflare ionospheric changes had two significant morphological characteristics: (1) A few minutes after the X9.3 flare peak on 6 September, clear traveling ionospheric disturbance (TID) fronts emanated near the sunrise terminator with alignment parallel to its direction—TIDs propagated predominantly eastward into the dayside with a 150 m/s phase speed and a ∼30‐min period; (2) synchronized differential TEC oscillations over continental United States with ∼60‐min periodicity and damping amplitude over time, following all three X‐class flares. Postflare ionospheric oscillation spectra exhibited significantly enhanced amplitudes and changes of periodicities (including the appearance of the 60‐min oscillations). The Millstone Hill incoherent scatter radar observed large ionospheric up‐welling occurring nearly simultaneously as detected TIDs at the X9.3 flare peak, with up to 80 m/s enhancements in vertical drift at 500 km lasting for ∼30 min. Results suggest that significant solar flare heating and associated dynamical effects may be an important factor in TID/acoustic gravity wave excitation.

     
    more » « less
  3. Abstract

    In this study, we report the persistent impacts of the 2011 Tohoku earthquake/tsunami on the ionosphere using the ground‐based Global Navigation Satellite System and FORMOSAT‐3/COSMIC total electron content. Multiple unusual ionospheric phenomena, such as ionospheric irregularities, nighttime medium‐scale traveling ionospheric disturbances (MSTIDs), and planar traveling ionospheric disturbances (TIDs), were observed after the emergence of tsunami‐induced concentric gravity waves. The ionospheric irregularities initially developed over the Hokkaido region following the interference of gravity waves at ~8:45 UT. Remarkably, the Perkins‐type nighttime MSTIDs accompanying the planar TIDs were discernible over Japan following the irregularities. By comparing with the tsunami model simulation and ocean buoy observations, it is determined that these planar TIDs, lasting for about 10 hr, were likely related to tsunami ocean waves reflected by seamounts, ridges, islands, and seafloor topography in the Pacific Ocean. Due to the absence of sporadicElayers, we suggest that the coupling between the tsunami‐generated gravity waves and the Perkins instability plays an essential role in initiating the equinoctial nighttime MSTIDs. The long‐lasting tsunami can continuously impact the ionosphere, affecting the nighttime ionospheric electrodynamics and making the conditions conducive for the development of midlatitude nighttime ionospheric irregularities and instabilities.

     
    more » « less
  4. Abstract

    A new TEC‐based ionospheric data assimilation system (TIDAS) over the continental US and adjacent area (20°–60°N, 60°–130°W, and 100–600 km) has been developed through assimilating heterogeneous ionospheric data, including dense ground‐based Global Navigation Satellite System (GNSS) Total Electron Content (TEC) from 2,000+ receivers, Constellation Observing System for Meteorology, Ionosphere, and Climate radio occultation data, JASON satellite altimeter TEC, and Millstone Hill incoherent scatter radar measurements. A hybrid Ensemble‐Variational scheme is utilized to reconstruct the regional 3‐D electron density distribution: a more realistic and location‐dependent background error covariance matrix is calculated from an ensemble of corrected NeQuick outputs, and a three‐dimensional variational (3DVAR) method is adopted for measurement updates to obtain an optimal state estimation. The spatial‐temporal resolution of the reanalyzed 3‐D electron density product is as high as 1° × 1° in latitude and longitude, 20 km in altitude, and 5 min in universal time, which is sufficient to reproduce ionospheric fine structure and storm‐time disturbances. The accuracy and reliability of data assimilation results are validated using ionosonde and other measurements. TIDAS reanalyzed electron density is able to successfully reconstruct the 3‐D morphology and dynamic evolution of the storm‐enhanced density (SED) plume observed during the St. Patrick's day geomagnetic storm on 17 March 2013 with high fidelity. Using TIDAS, we found that the 3‐D SED plume manifests as a ridge‐like high‐density channel that predominantly occurred between 300 and 500 km during 19:00–21:00 UT for this event, with the F2 region peak height being raised by 40–60 km and peak density enhancement of 30%–50%.

     
    more » « less
  5. Abstract

    This paper describes a new method for remote sensing of magnetic field fluctuations at ionospheric altitudes using a relatively long‐baseline interferometer and exceptionally bright cosmic radio sources at 35 MHz. The technique uses sensitive measurements of the difference in phase between two phased array telescopes separated by about 75 km and between the right and left circular polarizations to measure the amount of differential Faraday rotation. Combined with estimates of the background magnetic field and total electron content, these can be converted to measurements of fluctuations in the differential magnetic field parallel to the line of sight, ΔB. The temporal gradient in ΔBroughly follows the diurnal pattern expected for Bdue to the vertical gradient in the background electric field, but at roughly 25% the magnitude and offset by ∼50 nT hr−1. This suggests that the diurnal variation in the electric fields observed by the two telescopes are similar but slightly different (|ΔE| ≲ 0.1 mV m−1). Fluctuations in ΔBwere typically ∼10–30 nT with wavelike fluctuations often apparent. These typically have oscillation periods of about 10–30 min, similar to traveling ionospheric disturbances (TIDs). Simultaneous observations toward two sources separated by 25.4° on the sky (∼140 km in the F‐region) show a few detections of wavelike disturbances with lags of ±10–30 min between them. These imply speeds on the order of 100–200 m s−1, also similar to TIDs. We estimate that gravity waves with amplitudes within the dynamo region of ∼10 m s−1could generate the observed fluctuations in ΔB.

     
    more » « less