We utilize a coupled economy–agroecology–hydrology modeling framework to capture the cascading impacts of climate change mitigation policy on agriculture and the resulting water quality cobenefits. We analyze a policy that assigns a range of United States government’s social cost of carbon estimates ($51, $76, and $152/ton of CO2-equivalents) to fossil fuel–based CO2emissions. This policy raises energy costs and, importantly for agriculture, boosts the price of nitrogen fertilizer production. At the highest carbon price, US carbon emissions are reduced by about 50%, and nitrogen fertilizer prices rise by about 90%, leading to an approximate 15% reduction in fertilizer applications for corn production across the Mississippi River Basin. Corn and soybean production declines by about 7%, increasing crop prices by 6%, while nitrate leaching declines by about 10%. Simulated nitrate export to the Gulf of Mexico decreases by 8%, ultimately shrinking the average midsummer area of the Gulf of Mexico hypoxic area by 3% and hypoxic volume by 4%. We also consider the additional benefits of restored wetlands to mitigate nitrogen loading to reduce hypoxia in the Gulf of Mexico and find a targeted wetland restoration scenario approximately doubles the effect of a low to moderate social cost of carbon. Wetland restoration alone exhibited spillover effects that increased nitrate leaching in other parts of the basin which were mitigated with the inclusion of the carbon policy. We conclude that a national climate policy aimed at reducing greenhouse gas emissions in the United States would have important water quality cobenefits.
more »
« less
Long‐Term Trajectory of Nitrogen Loading and Delivery From Mississippi River Basin to the Gulf of Mexico
Abstract The large areal extent of hypoxia in the northern Gulf of Mexico has been partially attributed to substantial nitrogen (N) loading from the Mississippi River basin, which is driven by multiple natural and human factors. The available water quality monitoring data and most of the current models are insufficient to fully quantify N load magnitude and the underlying controls. Here we use a process‐based Dynamic Land Ecosystem Model to examine how multiple factors (synthetic N fertilizer, atmospheric N deposition, land use changes, climate variability, and increasing atmospheric CO2) have affected the loading and delivery of total nitrogen (TN) consisting of ammonium and nitrate (dissolved inorganic N) and total organic nitrogen from the Mississippi River basin during 1901–2014. The model results indicate that TN export during 2000–2014 was twofold larger than that in the first decade of twentieth century: Dissolved inorganic N export increased by 140% dominated by nitrate; total organic nitrogen export increased by 53%. The substantial enrichment of TN export since the 1960s was strongly associated with increased anthropogenic N inputs (synthetic N fertilizer and atmospheric N deposition). The greatest export of TN was in the spring. Although the implementation of N reduction has been carried out over the past three decades, total N loads to the northern Gulf of Mexico have not decreased significantly. Due to the legacy effect from historical N accumulation in soils and riverbeds, a larger reduction in synthetic N fertilizer inputs as well as improved N management practices are needed to alleviate ocean hypoxia in the northern Gulf of Mexico.
more »
« less
- Award ID(s):
- 1903722
- PAR ID:
- 10374950
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Global Biogeochemical Cycles
- Volume:
- 34
- Issue:
- 5
- ISSN:
- 0886-6236
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Phosphorus (P) control is critical to mitigating eutrophication in aquatic ecosystems, but the effectiveness of controlling P export from soils has been limited by our poor understanding of P dynamics along the land‐ocean aquatic continuum as well as the lack of well‐developed process models that effectively couple terrestrial and aquatic biogeochemical P processes. Here, we coupled riverine P biogeochemical processes and water transport with terrestrial processes within the framework of the Dynamic Land Ecosystem Model to assess how multiple environmental changes, including fertilizer and manure P uses, land use, climate, and atmospheric CO2, have affected the long‐term dynamics of P loading and export from the Mississippi River Basin to the Gulf of Mexico during 1901–2018. Simulations show that riverine exports of dissolved inorganic phosphorus (DIP), dissolved organic phosphorus, particulate organic phosphorus (POP), and particulate inorganic phosphorus (PIP) increased by 42%, 53%, 60%, and 53%, respectively, since the 1960s. Riverine DIP and PIP exports were the dominant components of the total P flux. DIP export was mainly enhanced by the growing mineral P fertilizer use in croplands, while increased PIP and POP exports were a result of the intensified soil erosion due to increased precipitation. Climate variability resulted in substantial interannual and decadal variations in P loading and export. Soil legacy P continues to contribute to P loading. Our findings highlight the necessity to adopt effective P management strategies to control P losses through reductions in soil erosion, and additionally, to improve P use efficiency in crop production.more » « less
-
null (Ed.)Abstract Although the hypoxia formation in the Gulf of Mexico is predominantly driven by increased riverine nitrogen (N) export from the Mississippi-Atchafalaya River basin, it remains unclear how hydroclimate extremes affect downstream N loads. Using a process-based hydro-ecological model, we reveal that over 60% of the land area of the Basin has experienced increasing extreme precipitation since 2000, and this area yields over 80% of N leaching loss across the region. Despite occurring in ~9 days year −1 , extreme precipitation events contribute ~1/3 of annual precipitation, and ~1/3 of total N yield on average. Both USGS monitoring and our modeling estimates demonstrate an approximately 30% higher annual N load in the years with extreme river flow than the long-term median. Our model suggests that N load could be reduced by up to 16% merely by modifying fertilizer application timing but increasing contribution of extreme precipitation is shown to diminish this potential.more » « less
-
Abstract Better documentation and understanding of long‐term temporal dynamics of nitrogen (N) and phosphorus (P) in watersheds is necessary to support effective water quality management, in part because studies have identified time lags between terrestrial nutrient balances and water quality. We present annual time series data from 1969 to 2012 for terrestrial N and P sources and monthly data from 1972 to 2013 for river N and P for the Willamette River Basin, Oregon, United States. Inputs to the watershed increased by factors of 3 for N and 1.2 for P. Synthetic fertilizer inputs increased in total and relative importance over time, while sewage inputs decreased. For N, increased fertilizer application was not matched by a proportionate increase in crop harvest; N use efficiency decreased from 69% to 38%. P use efficiency increased from 52% to 67%. As nutrient inputs to terrestrial systems increased, river concentrations and loads of total N, total P, and dissolved inorganic P decreased, and annual nutrient loads were strongly related to discharge. The N:P ratio of both sewage and fertilizer doubled over time but there was no similar trend in riverine export; river N:P concentrations declined dramatically during storms. River nutrient export over time was related to hydrology and waste discharge, with relatively little influence of watershed balances, suggesting that accumulation within soils or groundwater over time is mediating watershed export. Simply managing yearly nutrient balances is unlikely to improve water quality; rather, many factors must be considered, including soil and groundwater storage capacity, and gaseous loss pathways.more » « less
-
Abstract Agricultural runoff from the Mississippi‐Atchafalaya River Basin delivers nitrogen (N) and phosphorus (P) to the Gulf of Mexico, causing hypoxia, and climate drives interannual variation in nutrient loads. Climate phenomena such as El Niño–Southern Oscillation may influence nutrient export through effects on river flow, nutrient uptake, or biogeochemical transformation, but landscape variation at smaller spatial scales can mask climate signals in load or discharge time series within large river networks. We used multivariate autoregressive state‐space modeling to investigate climate signals in the long‐term record (1979–2014) of discharge, N, P, and SiO2loads at three nested spatial scales within the Mississippi‐Atchafalaya River Basin. We detected significant signals of El Niño–Southern Oscillation and land‐surface temperature anomalies in N loads but not discharge, SiO2, or P, suggesting that large‐scale climate phenomena contribute to interannual variation in nutrient loads through biogeochemical mechanisms beyond simple discharge‐load relationships.more » « less
An official website of the United States government
