skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Energetic Electron Precipitation Driven by the Combined Effect of ULF, EMIC, and Whistler Waves
Abstract Energetic electron losses in the Earth's inner magnetosphere are dominated by outward radial diffusion and scattering into the atmosphere by various electromagnetic waves. The two most important wave modes responsible for electron scattering are electromagnetic ion cyclotron (EMIC) waves and whistler‐mode waves (whistler waves) that, acting together, can provide rapid electron losses over a wide energy range from few keV to few MeV. Wave‐particle resonant interaction resulting in electron scattering is well described by quasi‐linear diffusion theory using the cold plasma dispersion, whereas the effects of nonlinear resonances and hot plasma dispersion are less well understood. This study aims to examine these effects and estimate their significance for a particular event during which both wave modes are quasi‐periodically modulated by ultra‐low‐frequency (ULF) compressional waves. Such modulation of EMIC and whistler wave amplitudes provides a unique opportunity to compare nonlinear resonant scattering (important for the most intense waves) with quasi‐linear diffusion (dominant for low‐intensity waves). The same modulation of plasma properties allows better characterization of hot plasma effects on the EMIC wave dispersion. Although hot plasma effects significantly increase the minimum resonant energy,Emin, for the most intense EMIC waves, such effects become negligible for the higher frequency part of the hydrogen‐band EMIC wave spectrum. Nonlinear phase trapping of 300–500 keV electrons through resonances with whistler waves may accelerate and make them resonant with EMIC waves that, in turn, quickly scatter those electrons into the loss‐cone. Our results highlight the importance of nonlinear effects for simulations of energetic electron fluxes in the inner magnetosphere.  more » « less
Award ID(s):
2021749
PAR ID:
10374975
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
127
Issue:
1
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Resonant scattering by electromagnetic ion cyclotron (EMIC) waves is one of the most effective mechanisms of relativistic electron losses in Earth’s inner magnetosphere. Low‐altitude spacecraft measurements, however, often show that the energy range of precipitating electrons is wider than theoretical predictions based on the cold plasma dispersion of EMIC waves. To explain this discrepancy, we examine the diffusion rates of EMIC waves by including hot plasma effects in their dispersion relation. Using the observed ion distribution functions, we investigate the hot plasma effects on the EMIC wave dispersion for a wide frequency range. We develop analytical equations for hot plasma effects on EMIC dispersion, and apply this model to diffusion rate evaluations. We show that hot ion effects tend to increase the minimum resonant energy for the frequency range around wave intensity maxima, but can decrease the minimum resonant energy for the higher‐frequency part of wave spectra. 
    more » « less
  2. Abstract Relativistic electron losses in Earth's radiation belts are usually attributed to electron resonant scattering by electromagnetic waves. One of the most important wave modes for such scattering is the electromagnetic ion cyclotron (EMIC) mode. Within the quasi‐linear diffusion framework, the cyclotron resonance of relativistic electrons with EMIC waves results in very fast electron precipitation to the atmosphere. However, wave intensities often exceed the threshold for nonlinear resonant interaction, and such intense EMIC waves have been shown to transport electrons away from the loss cone due to theforce bunchingeffect. In this study we investigate if this transport can block electron precipitation. We combine test particle simulations, low‐altitude observations of EMIC‐driven electron precipitation by the Electron Losses and Fields Investigations mission, and ground‐based EMIC observations. Comparing simulations and observations, we show that, despite the low pitch‐angle electrons being transported away from the loss cone, the scattering at higher pitch angles results in the loss cone filling and electron precipitation. 
    more » « less
  3. Abstract Energetic electron precipitation from the equatorial magnetosphere into the atmosphere plays an important role in magnetosphere‐ionosphere coupling: precipitating electrons alter ionospheric properties, whereas ionospheric outflows modify equatorial plasma conditions affecting electromagnetic wave generation and energetic electron scattering. However, ionospheric measurements cannot be directly related to wave and energetic electron properties measured by high‐altitude, near‐equatorial spacecraft, due to large mapping uncertainties. We aim to resolve this by projecting low‐altitude measurements of energetic electron precipitation by ELFIN CubeSats onto total electron content (TEC) maps serving as a proxy for ionospheric density structures. We examine three types of precipitation on the nightside: precipitation of <200 keV electrons in the plasma sheet, bursty precipitation of <500 keV electrons by whistler‐mode waves, and relativistic (>500 keV) electron precipitation by EMIC waves. All three types of precipitation show distinct features in TEC horizontal gradients, and we discuss possible implications of these features. 
    more » « less
  4. Abstract Electromagnetic ion cyclotron (EMIC) waves effectively scatter relativistic electrons in Earth's radiation belts and energetic ions in the ring current. Empirical models parameterizing the EMIC wave characteristics are important elements of inner magnetosphere simulations. Two main EMIC wave populations included in such simulations are the population generated by plasma sheet injections and another population generated by magnetospheric compression due to the solar wind. In this study, we investigate a third class of EMIC waves, generated by hot plasma sheet ions modulated by compressional ultra‐low frequency (ULF) waves. Such ULF‐modulated EMIC waves are mostly observed on the dayside, between magnetopause and the outer radiation belt edge. We show that ULF‐modulated EMIC waves are weakly oblique (with a wave normal angle ) and narrow‐banded (with a spectral width of of the mean frequency). We construct an empirical model of the EMIC wave characteristics as a function of ‐shell and MLT. The low ratio of electron plasma frequency to electron gyrofrequency around the EMIC wave generation region does not allow these waves to scatter energetic electrons. However, these waves provide very effective (comparable to strong diffusion) quasi‐periodic precipitation of plasma sheet protons. 
    more » « less
  5. Abstract Electron losses from the outer radiation belt are typically attributed to resonant electron scattering by whistler‐mode waves. Although the quasi‐linear diffusive regime of such scattering is well understood, the observed waves are often quite intense and in the nonlinear regime of resonant wave‐particle interaction. Such nonlinear resonant interactions are still being actively studied due to their potential for driving fast precipitation. However, direct observations of nonlinear resonance of whistler‐mode waves with electron distributions are scarce. Here, we present evidence for such resonance with high‐resolution electron energy and pitch angle spectra acquired at low‐altitudes by the dual Electron Losses and Fields INvestgation (ELFIN) CubeSats combined with conjugate measurements of equatorial plasma parameters, wave properties, and electron energy spectra by the Time History of Events and Macroscale Interactions during Substorms and Magnetospheric MultiScale missions. ELFIN has obtained numerous conjunction events exhibiting whistler wave driven precipitation; in this study, we present two such events which epitomize signatures of nonlinear resonant scattering. A test particle simulation of electron interactions with intense whistler‐mode waves prescribed at the equator is employed to directly compare modeled precipitation spectra with ELFIN observations. We show that the observed precipitating spectra match expectations to within observational uncertainties of wave amplitude for reasonable assumptions of wave power distribution along the magnetic field line. These results indicate the importance of nonlinear resonant effects when describing intense precipitation patterns of energetic electrons and open the possibility of remotely investigating equatorial wave properties using just properties of precipitation energy and pitch angle spectra. 
    more » « less