We show that atmospheric gravity waves can generate plasma ducts and irregularities in the plasmasphere using the coupled SAMI3/WACCM‐X model. We find the equatorial electron density is irregular as a function of longitude which is consistent with CRRES measurements (Clilverd et al., 2007,
Earth's slot region, lying between the outer and inner radiation belts, has been identified as due to a balance between inward radial diffusion and pitch angle (PA) scattering induced by waves. However, recent satellite observations and modeling studies indicate that cosmic ray albedo neutron decay (CRAND) may also play a significant role in energetic electron dynamics in the slot region. In this study, using a drift‐diffusion‐source model, we investigate the relative contribution of all significant waves and CRAND to the dynamics of energetic electrons in the slot region during July 2014, an extended period of quiet geomagnetic activity. The bounce‐averaged PA diffusion coefficients from three types of waves (hiss, lightning‐generated whistlers [LGW], and very low frequency [VLF] transmitters) are calculated based on quasi‐linear theory, while the CRAND source follows the results in Xiang et al. (2019,
- Award ID(s):
- 1834971
- PAR ID:
- 10375025
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 125
- Issue:
- 9
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract https://doi.org/10.1029/2007ja012416 ). We also find that plasma ducts can be generated forL ‐shells in the range 1.5–3.0 with lifetimes of ∼ 0.5 hr; this is in line with observations of ducted VLF wave propagation with lifetimes of 0.5–2.0 hr (Clilverd et al., 2008,https://doi.org/10.1029/2007ja012602 ; Singh et al., 1998,https://doi.org/10.1016/s1364-6826(98)00001-7 ). -
Abstract The electric fields of subauroral polarization streams (SAPS) have been suggested to affect energetic charged particles' dynamics in the inner magnetosphere, though their role on radiation belt electrons has never been properly quantified. A moderate geomagnetic storm on 2015‐09‐07 caused the deep injection of 10–100s of keV electrons in Earth's inner magnetosphere to low L* (L* < 4). Using a 2‐D test particle tracer, we present the effects of electric fields given by the Volland‐Stern model, a SAPS (Goldstein et al., 2005,
https://doi.org/10.1029/2005ja011135 ) model, and a modified SAPS model on the energetic electron deep injections. The modified SAPS model reflects the SAPS electric field observations by the Van Allen Probes and is supported by Defense Meteorological Satellite Program observations. Simulations suggest that the SAPS electric field pushes 10–20 MeV/G electrons Earthward to L* ∼ 2.7 in 2.5 hr, much deeper compared to the Volland‐Stern electric field. -
Abstract The discovery of the Van Allen radiation belts marked a prominent milestone in space physics. Recent advances, through the measurements of two CubeSat missions, have shed new light on the dynamics of energetic particles in the near‐Earth environment. Measurements from CSSWE, a student‐led mission, revealed that the decay of low‐energy neutrons, associated with cosmic rays impacting the atmosphere, is the primary source of relativistic electrons at the inner edge of the inner belt (Li et al.,
Nature , 2017,https://doi.org/10.1038/nature2464 ). Recently CIRBE captured striking details of energetic electron dynamics (Li et al.,GRL , 2024,https://doi.org/10.1029/2023gl107521 ), further demonstrating high‐quality science achievable with CubeSat missions. -
Abstract Energetic electron precipitation (EEP) associated with pulsating aurora can transfer greater than 30 keV electrons from the outer radiation belt region into the upper atmosphere and can deplete atmospheric ozone via collisions that produce NOx and HOx molecules. Our knowledge of exactly how EEP occurs is incomplete. Previous studies have shown that pitch angle scattering between electrons and lower‐band chorus waves can cause pulsating aurora associated with EEP and that substorms play an important role. In this work, we quantify the timescale of chorus wave decay following substorms and compare that to previously determined timescales. We find that the chorus decay e‐folding time varies based on magnetic local time (MLT), magnetic latitude, and wave frequency. The shortest timescales occur for lower‐band chorus in the 21 to 9 MLT region and compares, within uncertainty, to the energetic pulsating aurora timescale of Troyer et al. (2022,
https://doi.org/10.3389/fspas.2022.1032552 ) for energetic pulsating aurora. We are able to further support this connection by modeling our findings in a quasi‐linear diffusion simulation. These results provide observations of how chorus waves behave after substorms and add additional statistical evidence linking energetic pulsating aurora to substorm driven lower‐band chorus waves. -
Abstract MMS3 spacecraft passed the vicinity of the electron diffusion region of magnetotail reconnection on 3 July 2017, observing discrepancies between perpendicular electron bulk velocities and
drift, and agyrotropic electron crescent distributions. Analyzing linear wave dispersions, Burch et al. (2019, https://doi.org/10.1029/2019GL082471 ) showed the electron crescent generates high‐frequency waves. We investigate harmonics of upper‐hybrid (UH) waves using both observation and particle‐in‐cell (PIC) simulation, and the generation of electromagnetic radiation from PIC simulation. Harmonics of UH are linearly polarized and propagate along the perpendicular direction to the ambient magnetic field. Compared with two‐dimensional PIC simulation and nonlinear kinetic theory, we show that the nonlinear beam‐plasma interaction between the agyrotropic electrons and the core electrons generates harmonics of UH. Moreover, PIC simulation shows that agyrotropic electron beam can lead to electromagnetic (EM) radiation at the plasma frequency and harmonics.