skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Sampling‐Based Path Planning Algorithm for Improving Observations in Tropical Cyclones
Abstract Lack of high‐resolution observations in the inner‐core of tropical cyclones remains a key issue when constructing an accurate initial state of the storm structure. The major implication of an improper initial state is the poor predictability of the future state of the storm. The size and associated hazard from strong winds at the inner‐core make it impossible to sample this region entirely. However, targeting regions of the inner‐core where forecasted atmospheric measurements have high uncertainty can significantly improve the accuracy of measurements for the initial state of the storm. This study provides a scheme for targeted high‐resolution observations for small Unmanned Aircraft Systems (sUAS) platforms (e.g., Coyote sUAS) to improve the estimates of the atmospheric measurement in the inner‐core structure. The benefit of observation is calculated based on the high‐fidelity state‐of‐the‐art hurricane ensemble data assimilation system. Potential locations with the mostinformativemeasurements are identified through exploration of various simulation‐based solutions depending on the state variables (e.g., pressure, temperature, wind speed, relative humidity) and a combined representation of those variables. A sampling‐based sUAS path planning algorithm considers energy usage when locating the regions of highly uncertain prediction of measurements, allowing sUAS to maximize the benefit of observation. Robustness analysis of our algorithm for multiple scenarios of sUAS drop and goal locations shows satisfactory performance against benchmark similar to current NOAA field campaign. With optimized sUAS observations, a data assimilation analysis shows significant improvements of up to 4% in the tropical cyclone structure estimates after resolving uncertainties at targeted locations.  more » « less
Award ID(s):
1910397
PAR ID:
10375030
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth and Space Science
Volume:
9
Issue:
1
ISSN:
2333-5084
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract For data assimilation to provide faithful state estimates for dynamical models, specifications of observation uncertainty need to be as accurate as possible. Innovation-based methods based on Desroziers diagnostics, are commonly used to estimate observation uncertainty, but such methods can depend greatly on the prescribed background uncertainty. For ensemble data assimilation, this uncertainty comes from statistics calculated from ensemble forecasts, which require inflation and localization to address under sampling. In this work, we use an ensemble Kalman filter (EnKF) with a low-dimensional Lorenz model to investigate the interplay between the Desroziers method and inflation. Two inflation techniques are used for this purpose: 1) a rigorously tuned fixed multiplicative scheme and 2) an adaptive state-space scheme. We document how inaccuracies in observation uncertainty affect errors in EnKF posteriors and study the combined impacts of misspecified initial observation uncertainty, sampling error, and model error on Desroziers estimates. We find that whether observation uncertainty is over- or underestimated greatly affects the stability of data assimilation and the accuracy of Desroziers estimates and that preference should be given to initial overestimates. Inline estimates of Desroziers tend to remove the dependence between ensemble spread–skill and the initially prescribed observation error. In addition, we find that the inclusion of model error introduces spurious correlations in observation uncertainty estimates. Further, we note that the adaptive inflation scheme is less robust than fixed inflation at mitigating multiple sources of error. Last, sampling error strongly exacerbates existing sources of error and greatly degrades EnKF estimates, which translates into biased Desroziers estimates of observation error covariance. Significance StatementTo generate accurate predictions of various components of the Earth system, numerical models require an accurate specification of state variables at our current time. This step adopts a probabilistic consideration of our current state estimate versus information provided from environmental measurements of the true state. Various strategies exist for estimating uncertainty in observations within this framework, but are sensitive to a host of assumptions, which are investigated in this study. 
    more » « less
  2. Abstract This study examines the possible dependence of tropical cyclone (TC) development on the initial winds inside the radius of maximum wind (RMW) through ensemble axisymmetric numerical simulations. Results demonstrate that the vortex with higher initial winds inside the RMW favor larger surface enthalpy flux and thus faster moistening and earlier convective organization in the inner core, significantly shortening the initial spinup period. Higher inertial stability associated with higher winds inside the RMW implies higher eyewall‐heating efficiency, giving rise to higher intensification rate in the subsequent intensification stage but little difference in the steady‐state intensity. The results are confirmed with several sensitivity experiments using different model parameters and three‐dimensional simulations using the same model and configuration. The findings from this study strongly suggest that the realistic representation of the initial inner‐core winds is key to skillful TC intensity forecasts by numerical models and routine high‐resolution observations of the inner‐core wind structure are urged for improving TC intensity forecasts. 
    more » « less
  3. Abstract High temporal and spatial resolution precipitation datasets are essential for hydrological and flood modeling to assist water resource management and emergency responses, particularly for small watersheds, such as those in Hawai‘i in the United States. Unfortunately, fine temporal (subdaily) and spatial (<1 km) resolutions of rainfall datasets are not always readily available for applications. Radar provides indirect measurements of the rain rate over a large spatial extent with a reasonable temporal resolution, while rain gauges provide “ground truth.” There are potential advantages to combining the two, which have not been fully explored in tropical islands. In this study, we applied kriging with external drift (KED) to integrate hourly gauge and radar rainfall into a 250 m × 250 m gridded dataset for the tropical island of O‘ahu. The results were validated with leave-one-out cross validation for 18 severe storm events, including five different storm types (e.g., tropical cyclone, cold front, upper-level trough, kona low, and a mix of upper-level trough and kona low), and different rainfall structures (e.g., stratiform and convective). KED-merged rainfall estimates outperformed both the radar-only and gauge-only datasets by 1) reducing the error from radar rainfall and 2) improving the underestimation issues from gauge rainfall, especially during convective rainfall. We confirmed the KED method can be used to merge radar with gauge data to generate reliable rainfall estimates, particularly for storm events, on mountainous tropical islands. In addition, KED rainfall estimates were consistently more accurate in depicting spatial distribution and maximum rainfall value within various storm types and rainfall structures. Significance StatementThe results of this study show the effectiveness of utilizing kriging with external drift (KED) in merging gauge and radar rainfall data to produce highly accurate, reliable rainfall estimates in mountainous tropical regions, such as O‘ahu. The validated KED dataset, with its high temporal and spatial resolutions, offers a valuable resource for various types of rainfall-related research, particularly for extreme weather response and rainfall intensity analyses in Hawai’i. Our findings improve the accuracy of rainfall estimates and contribute to a deeper understanding of the performance of various rainfall estimation methods under different storm types and rainfall structures in a mountainous tropical setting. 
    more » « less
  4. Accurate specification of hurricane inner-core structure is critical to predicting the evolution of a hurricane. However, observations over hurricane inner cores are generally lacking. Previous studies have emphasized Tail Doppler radar (TDR) data assimilation to improve hurricane inner-core representation. Recently, Doppler wind lidar (DWL) has been used as an observing system to sample hurricane inner-core and environmental conditions. The NOAA P3 Hurricane Hunter aircraft has DWL installed and can obtain wind data over a hurricane’s inner core when the aircraft passes through the hurricane. In this study, we examine the impact of assimilating DWL winds and TDR radial winds on the prediction of Hurricane Earl (2016) with the NCEP operational Hurricane Weather Research and Forecasting (HWRF) system. A series of data assimilation experiments are conducted with the Gridpoint Statistical Interpolation (GSI)-based ensemble-3DVAR hybrid system to identify the best way to assimilate TDR and DWL data into the HWRF forecast system. The results show a positive impact of DWL data on hurricane analysis and prediction. Compared with the assimilation of u and v components, assimilation of DWL wind speed provides better hurricane track and intensity forecasts. Proper choices of data thinning distances (e.g., 5 km horizontal thinning and 70 hPa vertical thinning for DWL) can help achieve better analysis in terms of hurricane vortex representation and forecasts. In the analysis and forecast cycles, the combined TDR and DWL assimilation (DWL wind speed and TDR radial wind, along with other conventional data, e.g., NCEP Automated Data Processing (ADP) data) offsets the downgrade analysis from the absence of DWL observations in an analysis cycle and outperforms assimilation of a single type of data (either TDR or DWL) and leads to improved forecasts of hurricane track, intensity, and structure. Overall, assimilation of DWL observations has been beneficial for analysis and forecasts in most cases. The outcomes from this study demonstrate the great potential of including DWL wind profiles in the operational HWRF system for hurricane forecast improvement. 
    more » « less
  5. Abstract Pervasive cirrus clouds in the upper troposphere and tropical tropopause layer (TTL) influence the climate by altering the top‐of‐atmosphere radiation balance and stratospheric water vapor budget. These cirrus are often associated with deep convection, which global climate models must parameterize and struggle to accurately simulate. By comparing high‐resolution global storm‐resolving models from the Dynamics of the Atmospheric general circulation Modeled On Non‐hydrostatic Domains (DYAMOND) intercomparison that explicitly simulate deep convection to satellite observations, we assess how well these models simulate deep convection, convectively generated cirrus, and deep convective injection of water into the TTL over representative tropical land and ocean regions. The DYAMOND models simulate deep convective precipitation, organization, and cloud structure fairly well over land and ocean regions, but with clear intermodel differences. All models produce frequent overshooting convection whose strongest updrafts humidify the TTL and are its main source of frozen water. Intermodel differences in cloud properties and convective injection exceed differences between land and ocean regions in each model. We argue that, with further improvements, global storm‐resolving models can better represent tropical cirrus and deep convection in present and future climates than coarser‐resolution climate models. To realize this potential, they must use available observations to perfect their ice microphysics and dynamical flow solvers. 
    more » « less