skip to main content

Title: How Accurately Can We Model Magma Reservoir Failure With Uncertainties in Host Rock Rheology?

Forecasting the onset of a volcanic eruption from a closed system requires understanding its stress state and failure potential, which can be investigated through numerical modeling. However, the lack of constraints on model parameters, especially rheology, may substantially impair the accuracy of failure forecasts. Therefore, it is essential to know whether large variations and uncertainties in rock properties will preclude the ability of models to predict reservoir failure. A series of two‐dimensional, axisymmetric models are used to investigate sensitivities of brittle failure initiation to assumed rock properties. The numerical experiments indicate that the deformation and overpressure at failure onset simulated by elastic models will be much lower than the viscoelastic models, when the timescale of pressurization exceeds the viscoelastic relaxation time of the host rock. Poisson's ratio and internal friction angle have much less effect on failure forecasts than Young's modulus. Variations in Young's modulus significantly affect the prediction of surface deformation before failure onset when Young's modulus is < 40 GPa. Longer precursory volcano‐tectonic events may occur in weak host rock (E< 40 GPa) due to well‐developed Coulomb failure prior to dike propagation. Thus, combining surface deformation with seismicity may enhance the accuracy of eruption forecast in these situations. Compared to large and oblate magma systems, small and prolate systems create far less surface uplift prior to failure initiation, suggesting that more frequent measurements are necessary.

more » « less
Award ID(s):
1634995 1752477
Author(s) / Creator(s):
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Page Range / eLocation ID:
p. 8030-8042
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Extensive vertical deformation (>4.5 m) observed at Sierra Negra volcano Galápagos, Ecuador, between 1992 and the 2005 eruption led scientists to hypothesize that repeated faulting events relieved magma chamber overpressure and prevented eruption. To better understand the catalyst of the 2005 eruption, thermomechanical models are used to track the stress state and stability of the magma storage system during the 1992–2005 inflation events. Numerical experiments indicate that the host rock surrounding the Sierra Negra reservoir remained in compression with minimal changes in overpressure (~10 MPa) leading up to the 2005 eruption. The lack of tensile failure and minimal overpressure accumulation likely inhibited dike initiation and accommodated the significant inflation without the need for pressure relief through shallow trapdoor faulting events. The models indicate that static stress transfer due to the Mw5.4 earthquake 3 hr prior to the eruption most likely triggered tensile failure and catalyzed the 2005 eruption.

    more » « less
  2. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 371 drilled six sites (U1506–U1511) in the Tasman Sea, southwest Pacific, between 27 July and 26 September 2017. The primary goal was to understand Tonga-Kermadec subduction initiation through recovery of Paleogene sediment records. Secondary goals were to understand regional oceanography and climate through intervals of the Cenozoic, especially the Eocene. We recovered 2506 m of cored sediment and volcanic rock in 36.4 days of on-site drilling over a total expedition length of 58 days. The ages of strata at the base of each site were middle Eocene to Late Cretaceous. The cored intervals at five sites (U1506–U1510) sampled mostly nannofossil and foraminiferal ooze or chalk that contained volcanic or volcaniclastic intervals with variable clay content. Paleocene and Cretaceous sections at Site U1509 also contain calcareous clay and claystone. At Site U1511, a sequence of abyssal clay and diatomite was recovered with only minor amounts of carbonate. Wireline logs were collected at Sites U1507 and U1508. Our results provide the first firm basis for correlating lithostratigraphic units across a substantial part of northern Zealandia, including ties to onshore geology in New Caledonia and New Zealand. All six sites provide new stratigraphic and paleogeographic information that can be put into context through regional seismic stratigraphic interpretation and hence provide constraints on geodynamic models of subduction zone initiation. Evidence from Site U1507 suggests the northern New Caledonia Trough formed during an early stage of Paleogene tectonic change (before 44 Ma). Paleowater depth estimates from Site U1509 indicate that the Cretaceous Fairway-Aotea-Taranaki Basin dramatically deepened (~2000 m) at a similar time. Northern Lord Howe Rise at Site U1506 rose to sea level at ~50 Ma and subsided back to bathyal depths (600–1000 m) by 45 Ma. In contrast, southern Lord Howe Rise, at least near Site U1510, experienced its peak of transient uplift at ~40–30 Ma. A pulse of convergent plate failure took place across the southern part of the region (Sites U1508–U1511) between 45 and 35 Ma. Uplift of Lord Howe Rise was associated with intraplate volcanism, whereas volcanic activity on Norfolk Ridge near Site U1507 started at ~38 Ma and may relate to subduction. Shipboard observations made using cores and logs represent a substantial gain in fundamental knowledge about northern Zealandia. Prior to Expedition 371, only Deep Sea Drilling Project Sites 206, 207, and 208 had penetrated beneath upper Eocene strata in the region. Our samples and results provide valuable new constraints on geodynamic models of subduction initiation because they reveal the timing of plate deformation, the magnitude and timing of vertical motions, and the timing and type of volcanism. Secondary drilling objectives focused on paleoclimate topics were not fully completed, but significant new records were obtained that should contain information on Cenozoic oceanography and climate in the southwest Pacific. 
    more » « less

    Analysis of tectonic and earthquake-cycle associated deformation of the crust can provide valuable insights into the underlying deformation processes including fault slip. How those processes are expressed at the surface depends on the lateral and depth variations of rock properties. The effect of such variations is often tested by forward models based on a priori geological or geophysical information. Here, we first develop a novel technique based on an open-source finite-element computational framework to invert geodetic constraints directly for heterogeneous media properties. We focus on the elastic, coseismic problem and seek to constrain variations in shear modulus and Poisson’s ratio, proxies for the effects of lithology and/or temperature and porous flow, respectively. The corresponding nonlinear inversion is implemented using adjoint-based optimization that efficiently reduces the cost function that includes the misfit between the calculated and observed displacements and a penalty term. We then extend our theoretical and numerical framework to simultaneously infer both heterogeneous Earth’s structure and fault slip from surface deformation. Based on a range of 2-D synthetic cases, we find that both model parameters can be satisfactorily estimated for the megathrust setting-inspired test problems considered. Within limits, this is the case even in the presence of noise and if the fault geometry is not perfectly known. Our method lays the foundation for a future reassessment of the information contained in increasingly data-rich settings, for example, geodetic GNSS constraints for large earthquakes such as the 2011 Tohoku-oki M9 event, or distributed deformation along plate boundaries as constrained from InSAR.

    more » « less
  4. Fabricating micro and nanosized structures to induce hemiwicking on a heated surface has risen in popularity due to the higher heat flux the surface can experience. Recent studies have focused on the effects on the pillar geometry and spacing on the wicking velocity and the critical heat flux. As a result, a majority of the models that have been derived focus on the fluid properties and the wicking structure geometry and spacing. This study presents changes to the wicking performance when the stiffness of a soft material is taken into effect. Multiple similar wicking structures were fabricated using a negative mold method utilizing an in-house stamping apparatus. Using the mold, multiple polydimethylsiloxane (PDMS) samples were created, where the stiffness of the samples was varied by altering the mixing ratio and the curing time. The wicking velocity of ethanol, isopropyl alcohol, and isooctane did not vary for the samples that had a Young's Modulus greater than 1 MPa, but a notable decrease in the wicking velocity for all three fluids were observed for samples with a Young's Modulus less than 1 MPa. This study provides insight to the importance of the stiffness of the material is for hemiwicking on soft materials and that deformation effects have to be taken into account for Young's Moduli less than 1 MPa. 
    more » « less
  5. Abstract Fluid droplets can be induced to move over rigid or flexible surfaces under external or body forces. We describe the effect of variations in material properties of a flexible substrate as a mechanism for motion. In this paper, we consider a droplet placed on a substrate with either a stiffness or surface energy gradient and consider its potential for motion via coupling to elastic deformations of the substrate. In order to clarify the role of contact angles and to obtain a tractable model, we consider a 2D droplet. The gradients in substrate material properties give rise to asymmetric solid deformation and to unequal contact angles, thereby producing a force on the droplet. We then use a dynamic viscoelastic model to predict the resulting dynamics of droplets. Numerical results quantifying the effect of the gradients establish that it is more feasible to induce droplet motion with a gradient in surface energy. The results show that the magnitude of elastic modulus gradient needed to induce droplet motion exceeds experimentally feasible limits in the production of soft solids and is therefore unlikely as a passive mechanism for cell motion. In both cases, of surface energy or elastic modulus, the threshold to initiate motion is achieved at lower mean values of the material properties. 
    more » « less