skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global Survey of Electron Precipitation due to Hiss Waves in the Earth’s Plasmasphere and Plumes
Abstract We present a global survey of energetic electron precipitation from the equatorial magnetosphere due to hiss waves in the plasmasphere and plumes. Using Van Allen Probes measurements, we calculate the pitch angle diffusion coefficients at the bounce loss cone, and evaluate the energy spectrum of precipitating electron flux. Our ∼6.5‐year survey shows that, during disturbed times, hiss inside the plasmasphere primarily causes the electron precipitation atL > 4 over 8 h < MLT < 18 h, and hiss waves in plumes cause the precipitation atL > 5 over 8 h < MLT < 14 h andL > 4 over 14 h < MLT < 20 h. The precipitating energy flux increases with increasing geomagnetic activity, and is typically higher in the plasmaspheric plume than the plasmasphere. The characteristic energy of precipitation increases from ∼20 keV atL = 6–∼100 keV atL = 3, potentially causing the loss of electrons at several hundred keV.  more » « less
Award ID(s):
1732365 2021749 1847818 1928883
PAR ID:
10375098
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
126
Issue:
8
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Electromagnetic ion cyclotron (EMIC) waves are known to be efficient for precipitating >1 MeV electrons from the magnetosphere into the upper atmosphere. Despite considerable evidence showing that EMIC‐driven electron precipitation can extend down to sub‐MeV energies, the precise physical mechanism driving sub‐MeV electron precipitation remains an active area of investigation. In this study, we present an electron precipitation event observed by ELFIN CubeSats on 11 January 2022, exclusively at sub‐MeV energy atL ∼ 8–10.5, where trapped MeV electrons were nearly absent. The THEMIS satellites observed conjugate H‐band and He‐band EMIC waves and hiss waves in plasmaspheric plumes near the magnetic equator. Quasi‐linear diffusion results demonstrate that the observed He‐band EMIC waves, with a high ratio of plasma to electron cyclotron frequency, can drive electron precipitation down to ∼400 keV. Our findings suggest that exclusive sub‐MeV precipitation (without concurrent MeV precipitation) can be associated with EMIC waves, especially in the plume region at highLshells. 
    more » « less
  2. Abstract Whistler‐mode chorus and hiss waves play an important role in Earth's radiation belt electron dynamics. Direct measurements of whistler wave‐driven electron precipitation and the resultant pitch angle distribution were previously limited by the insufficient resolution of low Earth orbit satellites. In this study, we use recent measurements from the Electron Losses and Fields INvestigation CubeSats, which provide energy‐ and pitch angle‐resolved electron distributions to statistically evaluate electron scattering properties driven by whistler waves. Our survey indicates that events with increasing precipitating‐to‐trapped flux ratios (evaluated at 63 keV unless otherwise specified) correlate with increasing trapped flux at energies up to ∼750 keV. Weak precipitation events (precipitation ratio <0.2) are evenly distributed, while stronger precipitation events tend to be concentrated atL > 5 over midnight‐to‐noon local times during disturbed geomagnetic conditions. These results are crucial for characterizing the whistler‐mode wave driven electron scattering properties and evaluating its impact on the ionosphere. 
    more » « less
  3. Hiss waves play an important role in removing energetic electrons from Earth’s radiation belts by precipitating them into the upper atmosphere. Compared to plasmaspheric hiss that has been studied extensively, the evolution and effects of plume hiss are less understood due to the challenge of obtaining their global observations at high cadence. In this study, we use a neural network approach to model the global evolution of both the total electron density and the hiss wave amplitudes in the plasmasphere and plume. After describing the model development, we apply the model to a storm event that occurred on 14 May 2019 and find that the hiss wave amplitude first increased at dawn and then shifted towards dusk, where it was further excited within a narrow region of high density, namely, a plasmaspheric plume. During the recovery phase of the storm, the plume rotated and wrapped around Earth, while the hiss wave amplitude decayed quickly over the nightside. Moreover, we simulated the overall energetic electron evolution during this storm event, and the simulated flux decay rate agrees well with the observations. By separating the modeled plasmaspheric and plume hiss waves, we quantified the effect of plume hiss on energetic electron dynamics. Our simulation demonstrates that, under relatively quiet geomagnetic conditions, the region with plume hiss can vary from L = 4 to 6 and can account for up to an 80% decrease in electron fluxes at hundreds of keV at L > 4 over 3 days. This study highlights the importance of including the dynamic hiss distribution in future simulations of radiation belt electron dynamics. 
    more » « less
  4. Abstract Utilizing observations from the Electron Losses and Fields Investigation satellites, we present a statistical study of ∼2,000 events in 2019–2020 characterizing the occurrence in magnetic local time (MLT) and latitude of ≥50 keV electron isotropy boundaries (IBs) and associated electron precipitation. The isotropy boundary of an electron of a given energy is the magnetic latitude poleward of which persistent isotropized pitch angle distributions (Jprec/Jperp∼ 1) are first observed to occur, interpreted as resulting from magnetic field‐line curvature scattering in the equatorial magnetosphere. We find that energetic electron IBs can be well‐recognized on the nightside from dusk until dawn, under all geomagnetic activity conditions, with a peak occurrence rate of almost 90% near ∼22 hr in MLT, remaining above 80% from 21 to 01 MLT. The observed IBs span International Geophysical Reference Field (IGRF) magnetic latitudes of 60°–74° with a maximum occurrence between 66° and 71° (Lof 6–8), trending toward lower latitudes and premidnight local times with activity. The precipitating energy flux of ≥50 keV electrons averaged over the IB‐associated latitudes varies over four orders of magnitude, up to 1 erg/cm2‐s, and often includes wide‐energy electron spectra exceeding 1 MeV. The IB‐associated energies and precipitating fluxes also exhibit peak values near midnight for low activity, shifting toward premidnight for elevated activity. The average total precipitating power deposited over the high‐latitude nightside atmosphere (55°–80°; IGRFL ≥ 3) attributed to IBs is 10%–20%, or 10 MW, but at times can approach 100% of the total ≥50 keV electron energy deposition over the entire subauroral and auroral zone region, exceeding 1 GW. 
    more » « less
  5. Abstract Whistler mode chorus waves can scatter plasma sheet electrons into the loss cone and produce the Earth's diffuse aurora. Van Allen Probes observed plasma sheet electron injections and intense chorus waves on 24 November 2012. We use quasilinear theory to calculate the precipitating electron fluxes, demonstrating that the chorus waves could lead to high differential energy fluxes of precipitating electrons with characteristic energies of 10–30 keV. Using this method, we calculate the precipitating electron flux from 2012 to 2019 when the Van Allen Probes were near the magnetic equator and perform global surveys of electron precipitation under different geomagnetic conditions. The most significant electron precipitation due to chorus is found from the nightside to dawn sectors over 4 < L < 6.5. The average total precipitating energy flux is enhanced during disturbed conditions, with time‐averaged values reaching ~3–10 erg/cm2/s whenAE ≥ 500 nT. 
    more » « less