skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global Responses of Gravity Waves and Zonal Mean Winds to the Madden‐Julian Oscillation and the Latitudinal Dependence of Their Relations Using MERRA‐2
Abstract Using 17 years of Modern‐Era Retrospective analysis for Research and Applications, Version 2 (MERRA‐2) data, significant responses of gravity wave (GW) variances, zonal winds and parameterized GW drag to the Madden‐Julian Oscillation (MJO) are identified globally during boreal winter, and their relations are examined. The relative anomalies of GW variances range from −4% (phase 7) to 8% (phase 4) in tropics, and −20% (phase 1) to 20% (phase 5) in the northern polar region (NPR). The anomalies of zonal winds are from −3–3 m/s and −4–8 m/s in tropics and NPR, respectively. The vertical and latitudinal structures of MJO signals in GW, wind and GW drag show coherent patterns. Further analysis implies that in the NPR, the eastward wind leads to westward momentum flux carried by the GWs. This flux leads to westward drag, which drives that of zonal winds and imprint the MJO signal in GWs to the wind.  more » « less
Award ID(s):
1753214
PAR ID:
10375111
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
20
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The 17‐year SABER‐observed gravity wave (GW) temperature variances reveal significant responses of GWs to the Madden‐Julian Oscillation (MJO) over the middle atmosphere (30–100 km) in tropics and extratropics (45°S to 45°N) for boreal winter. The responses vary significantly with latitude but barely with altitude. From 20°S to 45°N, strong positive anomalies are found for MJO Phases 3–5, while negative anomalies for Phases 7–8. From 45–20°S, these patterns are reversed. The peak‐to‐peak differences (positive‐to‐negative anomalies) are ~6–16% relative to the seasonal mean. Comparison with MJO modulations on tropical convection and polar vortex suggests that GW responses in tropics may result from the modulation of GW source, while responses in northern extratropics may result from the modulation of polar vortex, which in turn modulates GW activities. These results highlight the importance of GWs to imprint the tropical MJO signals vertically to the middle atmosphere and horizontally to extratropical regions. 
    more » « less
  2. Abstract The 12‐year continuous observation of gravity wave momentum fluxes (GWMFs) estimated by the Mohe meteor radar (53.5°N, 122.3°E) revealed prominent intraseasonal variability around the extratropical mesopause (82–94 km) during boreal winters. Composite analysis of the December‒January‒February (DJF) season according to the Madden‒Julian Oscillation (MJO) phases revealed that the zonal GWMFs notably increased in MJO Phase 4 (P4) by ∼2–4 m2/s2, and a Monte Carlo test was designed to examine the statistical significance. The response in zonal winds lags behind the GWMF response by two MJO phases (i.e., 1/2π), indicating a “force‒response” interaction between them. Additionally, time‐lagged composites revealed that strengthened westward GWMFs occurred ∼25–35 days after MJO P4, coincident with the MJO impact on the zonal winds in the stratosphere. The analysis results also suggested that the mechanism of MJO by which the MJO influences the stratospheric circulation might involve poleward propagating effects of stationary planetary waves with zonal wavenumber one. This work emphasizes the importance of GW intraseasonal variability, which impacts tropical sources from the troposphere to the extratropical mesopause. 
    more » « less
  3. Abstract An exceptionally strong westward propagating quasi‐6‐day wave (Q6DW) with zonal wavenumber 1 in connection with the rare 2019 Southern Hemispheric Sudden Stratospheric Warming (SSW) is observed by two meteor radars at 30°S and is found to modulate and interact with the diurnal tide and gravity waves (GWs). The diurnal tide is amplified every 6 days and a prominent 21 hr child wave attributed to Q6DW‐diurnal tide nonlinear interaction occurs. Q6DW modulation on GWs is confirmed as the 4–5 day periodicity in GW variances. Simultaneously, the Q6DW appears to shift its period toward the periodicity of the modulated GW variances. Enhancement is also observed in the first results of meteor radar observed Q6DW Eliassen‐Palm flux, which may facilitate the global perturbation and persistence of this Q6DW. We conclude that the observed SSW triggered Q6DW‐tide and Q6DW‐GW interactions play an important role in coupling the lower atmospheric forcings to ionospheric variabilities. 
    more » « less
  4. Abstract A robust linear regression algorithm is applied to estimate 95% confidence intervals on the background wind associated with Madden–Julian oscillation (MJO) upper-tropospheric atmospheric circulation signals characterized by different phase speeds. Data reconstructed from the ERA5 to represent advection by the upper-tropospheric background flow and MJO-associated zonal wind anomalies, together with satellite outgoing longwave radiation anomalies, all in the equatorial plane, are regressed against advection data filtered for zonal wavenumber 2 and phase speeds of 3, 4, 5, and 7 m s −1 . The regressed advection by the background flow is then divided by the negative of the zonal gradient of regressed zonal wind across the central Indian Ocean base longitude at 80°E to estimate the associated background wind that leads to the given advection. The median estimates of background wind associated with these phase speeds are 13.4, 11.2, 10.5, and 10.3 m s −1 easterly. The differences between estimated values at neighboring speeds suggests that advection acts most strongly in slow MJO events, indicating that the slowest events happen to be slow because they experience stronger easterly advection by the upper-tropospheric background wind. Significance Statement The Madden–Julian oscillation (MJO) is the dominant subseasonal rainfall signal of the tropical atmosphere. This project shows that the background wind of the tropical atmosphere most especially slows down the slowest MJO events. Understanding what controls its speed might help scientists better predict events. 
    more » « less
  5. Abstract It is well known that stratospheric sudden warmings (SSWs) are a result of the interaction between planetary waves (PWs) and the stratospheric polar vortex. SSWs occur when breaking PWs slow down or even reverse this zonal wind jet and induce a sinking motion that adiabatically warms the stratosphere and lowers the stratopause. In this paper we characterize this downward progression of stratospheric temperature anomalies using 18 years (2003–2020) of Sounding of the Atmosphere using Broadband Radiometry (SABER) observations. SABER temperatures, derived zonal winds, PW activity and gravity wave (GW) activity during January and February of each year indicate a high‐degree of year‐to‐year variability. From 11 stratospheric warming events (9 major and 2 minor events), the descent rate of the stratopause altitude varies from 0.5 to 2 km/day and the lowest altitude the stratopause descends to varies from <20 to ∼50 km (i.e., no descent). A composite analysis of temperature and squared GW amplitude anomalies indicate that the downward descent of temperature anomalies from 50 to ∼25 km lags the downward progression of increased GW activity. This increased GW activity coincides with the weakening and reversal of the westward zonal winds in agreement with previous studies. Our study suggests that although PWs drive the onset of SSWs at 30 km, GWs also play a role in contributing to the descent of temperature anomalies from the stratopause to the middle and lower stratosphere. 
    more » « less