skip to main content


Search for: All records

Award ID contains: 1753214

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Using 17 years of Modern‐Era Retrospective analysis for Research and Applications, Version 2 (MERRA‐2) data, significant responses of gravity wave (GW) variances, zonal winds and parameterized GW drag to the Madden‐Julian Oscillation (MJO) are identified globally during boreal winter, and their relations are examined. The relative anomalies of GW variances range from −4% (phase 7) to 8% (phase 4) in tropics, and −20% (phase 1) to 20% (phase 5) in the northern polar region (NPR). The anomalies of zonal winds are from −3–3 m/s and −4–8 m/s in tropics and NPR, respectively. The vertical and latitudinal structures of MJO signals in GW, wind and GW drag show coherent patterns. Further analysis implies that in the NPR, the eastward wind leads to westward momentum flux carried by the GWs. This flux leads to westward drag, which drives that of zonal winds and imprint the MJO signal in GWs to the wind.

     
    more » « less
  2. Abstract

    We develop a new methodology for the multi‐resolution assimilation of electric fields by extending a Gaussian process model (Lattice Kriging) used for scalar field originally to vector field. This method takes the background empirical model as “a priori” knowledge and fuses real observations under the Gaussian process framework. The comparison of assimilated results under two different background models and three different resolutions suggests that (a) the new method significantly reduces fitting errors compared with the global spherical harmonic fitting (SHF) because it uses range‐limited basis functions ideal for the local fitting and (b) the fitting resolution, determined by the number of basis functions, is adjustable and higher resolution leads to smaller errors, indicating that more structures in the data are captured. We also test the sensitivity of the fitting results to the total amount of input data: (a) as the data amount increases, the fitting results deviate from the background model and become more determined by data and (b) the impacts of data can reach remote regions with no data available. The assimilation also better captures short‐period variations in local PFISR measurements than the SHF and maintains a coherent pattern with the surrounding. The multi‐resolution Lattice Kriging is examined via attributing basis functions into multiple levels with different resolutions (fine level is located in the region with observations). Such multi‐resolution fitting has the smallest error and shortest computation time, making the regional high‐resolution modeling efficient. Our method can be modified to achieve the multi‐resolution assimilation for other vector fields from unevenly distributed observations.

     
    more » « less
  3. Abstract

    The 17‐year SABER‐observed gravity wave (GW) temperature variances reveal significant responses of GWs to the Madden‐Julian Oscillation (MJO) over the middle atmosphere (30–100 km) in tropics and extratropics (45°S to 45°N) for boreal winter. The responses vary significantly with latitude but barely with altitude. From 20°S to 45°N, strong positive anomalies are found for MJO Phases 3–5, while negative anomalies for Phases 7–8. From 45–20°S, these patterns are reversed. The peak‐to‐peak differences (positive‐to‐negative anomalies) are ~6–16% relative to the seasonal mean. Comparison with MJO modulations on tropical convection and polar vortex suggests that GW responses in tropics may result from the modulation of GW source, while responses in northern extratropics may result from the modulation of polar vortex, which in turn modulates GW activities. These results highlight the importance of GWs to imprint the tropical MJO signals vertically to the middle atmosphere and horizontally to extratropical regions.

     
    more » « less
  4. Abstract

    The Madden‐Julian Oscillation (MJO), an eastward‐moving disturbance near the equator (±30°) that typically recurs every ∼30–90 days in tropical winds and clouds, is the dominant mode of intraseasonal variability in tropical convection and circulation and has been extensively studied due to its importance for medium‐range weather forecasting. A previous statistical diagnostic of SABER/TIMED observations and the MJO index showed that the migrating diurnal (DW1) and the important nonmigrating diurnal (DE3) tide modulates on MJO‐timescale in the mesosphere/lower thermosphere (MLT) by about 20%–30%, depending on the MJO phase. In this study, we address the physics of the underlying coupling mechanisms using SABER, MERRA‐2 reanalysis, and SD‐WACCMX. Our emphasis was on the 2008–2010 time period when several strong MJO events occurred. SD‐WACCMX and SABER tides show characteristically similar MJO‐signal in the MLT region. The tides largely respond to the MJO in the tropospheric tidal forcing and less so to the MJO in tropospheric/stratospheric background winds. We further quantify the MJO response in the MLT region in the SD‐WACCMX zonal and meridional momentum forcing by separating the relative contributions of classical (Coriolis force and pressure gradient) and nonclassical forcing (advection and gravity wave drag [GWD]) which transport the MJO‐signal into the upper atmosphere. Interestingly, the tidal MJO‐response is larger in summer due to larger momentum forcing in the MLT region despite the MJO being most active in winter. We find that tidal advection and GWD forcing in MLT can work together or against each other depending on their phase relationship to the MJO‐phases.

     
    more » « less
  5. Abstract

    A statistical study of 18 years of diurnal temperature tides observed by the SABER instrument on board the TIMED satellite reveals a substantial response of the tides in the upper atmosphere (>60 km) to the Madden‐Julian Oscillation (MJO) in the tropical troposphere. Nonmigrating tidal amplitudes are modulated at the intraseasonal MJO periods up to ~25% relative to the seasonal mean, twice as much as for the migrating tides (~10%). We fully characterize the tidal response for active MJO days as a function of season and MJO location as prescribed by the MJO index. The MJO modulation of the tides was predicted by models but could not be unequivocally observed before. Our results further point to an important role of background winds that partly cause a different response for equatorial and nonequatorial tidal modes in different seasons, which has implications for the MJO imprint on the ionospheric dynamo region.

     
    more » « less
  6. Abstract

    On the night of 18–19 October 2018, sodium resonance lidar measurements show the presence of overturning in the mesospheric sodium layer. Two independent tracers, sodium mixing ratio and potential temperature, derived from resonance and Rayleigh lidar measurements, reveal that vertical spreading of the sodium mixing ratio contours and a layer of convective instability coincide with this overturning. Analysis of lidar measurements also reveals the presence of gravity waves that propagate upward, are saturated, and dissipate at the height of the convective instability. The vertical spreading is analyzed in terms of turbulent diffusive transport using a model based on material continuity of sodium. Estimates of the turbulent eddy diffusion coefficient, K, and energy dissipation rate,εare derived from the transport model. The energy dissipated by the gravity waves is also calculated and found to be sufficient to generate the turbulence. We consider three other examples of overturning, instability and spreading on the nights of: 17–18 February 2009, 25–26 January 2015, and 8–9 October 2018. For all four events we find that the values of K (∼1,000 m2/s) are larger and the values ofε(∼10–100 mW/kg) are of similar magnitude to those values typically reported by ionization gauge measurements. These examples also reveal that higher levels of turbulent mixing are consistently found in regions of lower stability.

     
    more » « less
  7. Abstract

    Ionospheric day‐to‐day variability is essential for understanding the space environment, while it is still challenging to properly quantify and forecast. In the present work, the day‐to‐day variability of F2 layer peak electron densities (NmF2) is examined from both observational and modeling perspectives. Ionosonde data over Wuhan station (30.5°N, 114.5°E; 19.3°N magnetic latitude) are compared with simulations from the specific dynamics Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension (SD‐WACCM‐X) and the Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (TIEGCM) in 2009 and 2012. Both SD‐WACCM‐X and TIEGCM are driven by the realistic 3 h geomagnetic index and daily solar input, and the former includes self‐consistently solved physics and chemistry in the lower atmosphere. The correlation coefficient between observations and SD‐WACCM‐X simulations is much larger than that of the TIEGCM simulations, especially during dusk in 2009 and nighttime in 2012. Both the observed and SD‐WACCM‐X simulated day‐to‐day variability of NmF2 reveal a similar day‐night dependence in 2012 that increases large during the nighttime and decreases during the daytime, and shows favorable consistency of daytime variability in 2009. Both the observations and SD‐WACCM‐X simulations also display semiannual variations in nighttime NmF2 variability, although the month with maximum variability is slightly different. However, TIEGCM does not reproduce the day‐night dependence or the semiannual variations well. The results emphasize the necessity for realistic lower atmospheric perturbations to characterize ionospheric day‐to‐day variability. This work also provides a validation of the SD‐WACCM‐X in terms of ionospheric day‐to‐day variability.

     
    more » « less
  8. Abstract

    Analyzing Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) observations from 2003 to 2018, the interannual variability of 2–5d eastward propagating planetary waves is found to correlate positively with zonal‐mean zonal winds averaged over 67.5°±10°S but negatively with the quasi‐biennial oscillation (QBO) index in austral winter. The composite‐mean wave amplitudes are ~20% larger in QBOe than in QBOw. On statistical average, the poleward flank strengthening and the equatorward flank weakening of polar night jet (PNJ) during QBOe form a dipole‐cell pattern. In contrast, only a single negative cell is seen in the Northern Hemisphere zonal‐mean zonal winds (January) previously explained by the Holton‐Tan theory. Such difference implies an interhemispheric asymmetry and other processes needed to explain the additional positive cell in Antarctica. Mechanistic modeling illustrates that the stronger PNJ generates eastward propagating planetary waves with larger growth rates (stronger waves) in QBOe than QBOw, explaining the QBO‐like signal in the Antarctic planetary waves.

     
    more » « less
  9. Abstract

    A dramatic thermospheric temperature enhancement and inversion layer (TTEIL) was observed by the Fe Boltzmann lidar at McMurdo, Antarctica during a geomagnetic storm (Chu et al. 2011,https://doi.org/10.1029/2011GL050016). The Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (TIEGCM) driven by empirical auroral precipitation and background electric fields cannot adequately reproduce the TTEIL. We incorporate the Defense Meteorological Satellite Program (DMSP)/Special Sensor Ultraviolet Spectrographic Imager (SSUSI) auroral precipitation maps, which capture the regional‐scale features into TIEGCM and add subgrid electric field variability in the regions with strong auroral activity. These modifications enable the simulation of neutral temperatures closer to lidar observations and neutral densities closer to GRACE satellite observations (~475 km). The regional scale auroral precipitation and electric field variabilities are both needed to generate strong Joule heating that peaks around 120 km. The resulting temperature increase leads to the change of pressure gradients, thus inducing a horizontal divergence of air flow and large upward winds that increase with altitude. Associated with the upwelling wind is the adiabatic cooling gradually increasing with altitude and peaking at ~200 km. The intense Joule heating around 120 km and strong cooling above result in differential heating that produces a sharp TTEIL. However, vertical heat advection broadens the TTEIL and raises the temperature peak from ~120 to ~150 km, causing simulations deviating from observations. Strong local Joule heating also excites traveling atmospheric disturbances that carry the TTEIL signatures to other regions. Our study suggests the importance of including fine‐structure auroral precipitation and subgrid electric field variability in the modeling of storm‐time ionosphere‐thermosphere responses.

     
    more » « less
  10. Abstract

    This work presents the first lidar observations of a Quasi‐Biennial Oscillation (QBO) in the interannual variations of stratospheric gravity wave potential energy density (Epmin 30–50 km) at McMurdo (77.84°S, 166.67°E), Antarctica. This paper also reports the first identification of QBO signals in the distance between McMurdo and the polar vortex edge. Midwinter stratospheric gravity wave activity is stronger during the QBO easterly phase when the June polar vortex expands and the polar night jet shifts equatorward. During the QBO westerly phase, gravity wave activity is weaker when the polar vortex contracts and the polar night jet moves poleward. Nine years of lidar data (2011–2019) exhibit the meanEpmwinter maxima being ~43% higher during QBO easterly than westerly. The June polar vortex edge at 45 km altitude moves equatorward/poleward during QBO easterly/westerly phases with ~8° latitude differences (39.7°S vs. 47.7°S) as revealed in 21 years of MERRA‐2 data (1999–2019). We hypothesize that an equatorward shifted polar vortex corresponds to less critical level filtering of gravity waves and thus higherEpmat McMurdo. The critical level filtering is characterized by wind rotation angle (WRA), and we find a linear correlation between the WRA andEpminterannual variations. The results suggest that the QBO is likely controlling the interannual variations of theEpmwinter maxima over McMurdo via the critical level filtering. This observationally based study lays the groundwork for a rigorous numerical study that will provide robust statistics to better understand the mechanisms that link the tropical QBO to extratropical waves.

     
    more » « less