skip to main content


Title: Retrieval of Vertical Profile of Cirrus Cloud Effective Particle Size Using Reflected Line Spectra in 1.38 μm Band
Abstract

This paper presents a new retrieval method for inferring the vertical profile of cirrus cloud effective particle size by using solar reflected line spectra in the 1.38‐μm band. The retrieval method is based on the maximum‐photon penetration principle coupled with the constrained linear inversion. This approach takes advantage of the vertical stratification of cirrus cloud effective particle size as well as absorption lines of water vapor of different intensity, which contain rich information on the vertical structure of cloud particle size. Reflected radiances at different wavenumbers provide the effective‐size information at different heights within cirrus associated with photon different penetration depths. Assuming a vertical profile of effective size monotonically decreasing toward cloud top and using results based on “exact” radiative transfer computations, we perform retrieval of the effective size for a number of model cirrus to check for algorithm accuracy. The retrieved profile of effective size is close to the model profile for cirrus optical depth less than about eight with an uncertainty range of 2.2–4.2 μm. In addition, we further carry out a sensitivity study involving the retrieved effective size in connection with different water vapor profiles and demonstrate that the difference from the model is only several percent except for the cloud top if an appropriate wavenumber set is selected. The results from this study suggest that the present method can be applied to realistic remote sensing of the vertical profile of cirrus cloud particle size.

 
more » « less
Award ID(s):
1660587 1701526
NSF-PAR ID:
10375123
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth and Space Science
Volume:
7
Issue:
5
ISSN:
2333-5084
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The profiles of marine boundary layer (MBL) cloud and drizzle microphysical properties are important for studying the cloud‐to‐rain conversion and growth processes in MBL clouds. However, it is challenging to simultaneously retrieve both cloud and drizzle microphysical properties within an MBL cloud layer using ground‐based observations. In this study, methods were developed to first decompose drizzle and cloud reflectivity in MBL clouds from Atmospheric Radiation Measurement cloud radar reflectivity measurements and then simultaneously retrieve cloud and drizzle microphysical properties during the Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE‐ENA) campaign. These retrieved microphysical properties, such as cloud and drizzle particle size (rcandrm,d), their number concentration (NcandNd) and liquid water content (LWCcandLWCd), have been validated by aircraft in situ measurements during ACE‐ENA (~158 hr of aircraft data). The mean surface retrieved (in situ measured)rc,Nc, andLWCcare 10.9 μm (11.8 μm), 70 cm−3(60 cm−3), and 0.21 g m−3(0.22 g m−3), respectively. For drizzle microphysical properties, the retrieved (in situ measured)rd,Nd, andLWCdare 44.9 μm (45.1 μm), 0.07 cm−3(0.08 cm−3), and 0.052 g m−3(0.066 g m−3), respectively. Treating the aircraft in situ measurements as truth, the estimated median retrieval errors are ~15% forrc, ~35% forNc, ~30% forLWCcandrd, and ~50% forNdandLWCd. The findings from this study will provide insightful information for improving our understanding of warm rain processes, as well as for improving model simulations. More studies are required over other climatic regions.

     
    more » « less
  2. Abstract. In this study, we developed a novel algorithm based on the collocatedModerate Resolution Imaging Spectroradiometer (MODIS) thermal infrared (TIR)observations and dust vertical profiles from the Cloud–Aerosol Lidar withOrthogonal Polarization (CALIOP) to simultaneously retrieve dust aerosoloptical depth at 10 µm (DAOD10 µm) and the coarse-mode dusteffective diameter (Deff) over global oceans. The accuracy of theDeff retrieval is assessed by comparing the dust lognormal volumeparticle size distribution (PSD) corresponding to retrieved Deff withthe in situ-measured dust PSDs from the AERosol Properties – Dust(AER-D), Saharan Mineral Dust Experiment (SAMUM-2), and Saharan Aerosol Long-Range Transport and Aerosol–Cloud-InteractionExperiment (SALTRACE) fieldcampaigns through case studies. The new DAOD10 µm retrievals wereevaluated first through comparisons with the collocated DAOD10.6 µmretrieved from the combined Imaging Infrared Radiometer (IIR) and CALIOPobservations from our previous study (Zheng et al., 2022). The pixel-to-pixelcomparison of the two DAOD retrievals indicates a good agreement(R∼0.7) and a significant reduction in (∼50 %) retrieval uncertainties largely thanks to the better constraint ondust size. In a climatological comparison, the seasonal and regional(2∘×5∘) mean DAOD10 µm retrievals basedon our combined MODIS and CALIOP method are in good agreement with the twoindependent Infrared Atmospheric Sounding Interferometer (IASI) productsover three dust transport regions (i.e., North Atlantic (NA; R=0.9),Indian Ocean (IO; R=0.8) and North Pacific (NP; R=0.7)). Using the new retrievals from 2013 to 2017, we performed a climatologicalanalysis of coarse-mode dust Deff over global oceans. We found thatdust Deff over IO and NP is up to 20 % smaller than that over NA.Over NA in summer, we found a ∼50 % reduction in the numberof retrievals with Deff>5 µm from 15 to35∘ W and a stable trend of Deff average at 4.4 µm from35∘ W throughout the Caribbean Sea (90∘ W). Over NP inspring, only ∼5 % of retrieved pixels with Deff>5 µm are found from 150 to 180∘ E, whilethe mean Deff remains stable at 4.0 µm throughout eastern NP. To the best of our knowledge, this study is the first to retrieve both DAOD andcoarse-mode dust particle size over global oceans for multiple years. Thisretrieval dataset provides insightful information for evaluating dustlongwave radiative effects and coarse-mode dust particle size in models.

     
    more » « less
  3. Sub-cloud rain evaporation in the trade wind region significantly influences the boundary layer mass and energy budgets. Parameterizing it is, however, difficult due to the sparsity of well-resolved rain observations and the challenges of sampling short-lived marine cumulus clouds. In this study, sub-cloud rain evaporation is analyzed using a steady-state, one-dimensional model that simulates changes in drop sizes, relative humidity, and rain isotopic composition. The model is initialized with relative humidity, raindrop size distributions, and water vapor isotope ratios (e.g., δDv, δ18Ov) sampled by the NOAA P3 aircraft during the Atlantic Tradewind Ocean–Atmosphere Mesoscale Interaction Campaign (ATOMIC), which was part of the larger EUREC4A (ElUcidating the RolE of Clouds–Circulation Coupling in ClimAte) field program. The modeled surface precipitation isotope ratios closely match the observations from EUREC4A ground-based and ship-based platforms, lending credibility to our model. The model suggests that 63 % of the rain mass evaporates in the sub-cloud layer across 22 P3 cases. The vertical distribution of the evaporated rain flux is top heavy for a narrow (σ) raindrop size distribution (RSD) centered over a small geometric mean diameter (Dg) at the cloud base. A top-heavy profile has a higher rain-evaporated fraction (REF) and larger changes in the rain deuterium excess (d=δD-8×δ18O) between the cloud base and the surface than a bottom-heavy profile, which results from a wider RSD with larger Dg. The modeled REF and change in d are also more strongly influenced by cloud base Dg and σ rather than the concentration of raindrops. The model results are accurate as long as the variations in the relative humidity conditions are accounted for. Relative humidity alone, however, is a poor indicator of sub-cloud rain evaporation. Overall, our analysis indicates the intricate dependence of sub-cloud rain evaporation on both thermodynamic and microphysical processes in the trade wind region. 
    more » « less
  4. Abstract. Cirrus clouds that form in the tropical tropopause layer(TTL) can play a key role in vertical transport through the uppertroposphere and lower stratosphere, which can significantly impact theradiative energy budget and stratospheric chemistry. However, the lack ofrealistic representation of natural ice cloud habits in microphysicalparameterizations can lead to uncertainties in cloud-related processes andcloud–climate feedbacks. The main goal of this study is to investigate therole of different cloud regimes and the associated ice habits in regulatingthe properties of the TTL. We compare aircraft measurements from theStratoClim field campaign to a set of numerical experiments at the scale of large-eddy simulations (LESs) for the same case study that employ differentmicrophysics schemes. Aircraft measurements over the southern slopes of theHimalayas captured high ice water content (HIWC) up to 2400 ppmv and iceparticle aggregates exceeding 700 µm in size with unusually longresidence times. The observed ice particles were mainly of liquid origin,with a small amount formed in situ. The corresponding profile of ice water content (IWC) fromthe ERA5 reanalysis corroborates the presence of HIWC detrained from deep-convective plumes in the TTL but underestimates HIWC by an order ofmagnitude. In the TTL, only the scheme that predicts ice habits canreproduce the observed HIWC, ice number concentration, and bimodal iceparticle size distribution. The lower range of particle sizes is mostlyrepresented by planar and columnar habits, while the upper range isdominated by aggregates. Large aggregates with sizes between 600 and 800 µm have fall speeds of less than 20 cm s−1, which explains thelong residence time of the aggregates in the TTL. Planar ice particles ofliquid origin contribute substantially to HIWC. The columnar and aggregatehabits are in the in situ range with lower IWC and number concentrations. Forall habits, the ice number concentration increases with decreasingtemperature. For the planar ice habit, relative humidity is inverselycorrelated with fall speed. This correlation is less evident for the othertwo ice habits. In the lower range of supersaturation with respect to ice,the columnar habit has the highest fall speed. The difference in ice numberconcentration across habits can be up to 4 orders of magnitude, withaggregates occurring in much smaller numbers. We demonstrate and quantifythe linear relationship between the differential sedimentation of pristineice crystals and the size of the aggregates that form when pristine crystalscollide. The slope of this relationship depends on which pristine ice habitsediments faster. Each simulated ice habit is associated with distinctradiative and latent heating rates. This study suggests that a modelconfiguration nested down to LES scales with a microphysicalparameterization that predicts ice shape evolution is crucial to provide anaccurate representation of the microphysical properties of TTL cirrus andthus the associated (de)hydration process. 
    more » « less
  5. null (Ed.)
    ABSTRACT We present the most detailed data-driven exploration of cloud opacity in a substellar object to-date. We have tested over 60 combinations of cloud composition and structure, particle-size distribution, scattering model, and gas phase composition assumptions against archival 1–15 μm spectroscopy for the unusually red L4.5 dwarf 2MASSW J2224438-015852 using the Brewster retrieval framework. We find that, within our framework, a model that includes enstatite and quartz cloud layers at shallow pressures, combined with a deep iron cloud deck fits the data best. This model assumes a Hansen distribution for particle sizes for each cloud, and Mie scattering. We retrieved particle effective radii of $\log _{10} a {\rm (\mu m)} = -1.41^{+0.18}_{-0.17}$ for enstatite, $-0.44^{+0.04}_{-0.20}$ for quartz, and $-0.77^{+0.05}_{-0.06}$ for iron. Our inferred cloud column densities suggest ${\rm (Mg/Si)} = 0.69^{+0.06}_{-0.08}$ if there are no other sinks for magnesium or silicon. Models that include forsterite alongside, or in place of, these cloud species are strongly rejected in favour of the above combination. We estimate a radius of 0.75 ± 0.02 RJup, which is considerably smaller than predicted by evolutionary models for a field age object with the luminosity of 2M2224-0158. Models which assume vertically constant gas fractions are consistently preferred over models that assume thermochemical equilibrium. From our retrieved gas fractions, we infer ${\rm [M/H]} = +0.38^{+0.07}_{-0.06}$ and ${\rm C/O} = 0.83^{+0.06}_{-0.07}$. Both these values are towards the upper end of the stellar distribution in the Solar neighbourhood, and are mutually consistent in this context. A composition towards the extremes of the local distribution is consistent with this target being an outlier in the ultracool dwarf population. 
    more » « less