skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 17, 2026

Title: A novel retrieval of global dust optical depth and effective diameter based on MODIS thermal infrared observations
Airborne mineral dust significantly influences Earth’s climate through perturbing Earth’s radiation budget, modulating cloud formation and microphysical properties, and fertilizing the biosphere. Recent field campaigns have revealed substantially more coarse-mode dust particles in the atmosphere than previously recognized, yet current satellite retrievals and climate models inadequately represent these particles. This study presents a novel retrieval algorithm for dust aerosol optical depth at 10 μm (AOD10μm) and effective diameter (Deff) using Moderate Resolution Imaging Spectroradiometer (MODIS) thermal infrared (TIR) observations over global land and ocean. Building upon the previous synergistic approach for MODIS and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), we improve the retrieval from CALIOP-track-limited coverage to full-swath MODIS observations at 10-km resolution over both ocean and land surfaces. The retrieval improvements include: (1) application of climatological CALIOP dust vertical profiles (2007–2017) to constrain dust vertical distribution for off-CALIOP-track pixels; (2) the improved optimization method to effectively handle nonmonotonic cost functions arising from temperature inversions within the Saharan Air Layer; and (3) extension to land surfaces through incorporation of MODIS-retrieved surface emissivity and ERA5 reanalysis data. Validation against coarse-mode AOD from global AERONET (N = 4703) and MAN (N = 1673) observations yields R = 0.82 and 0.85 for AOD10μm, with retrieval uncertainty characterized as ε = 15 % × AOD + 0.04. The retrieved Deff demonstrates excellent agreement with in-situ measurements collected from 24 field campaigns around the globe (R = 0.84, MBE = 0.23 μm, RMSE = 0.73 μm), capturing the particle size variation from near-source regions (Deff = 7–8 μm) to long-range transport (Deff = 3–5 μm). Case studies of dust events over the Namibian coast and trans-Atlantic corridor demonstrate the retrieval’s capability to resolve episodic dust properties and size-dependent deposition during transport. This improved retrieval addresses the critical observational gap for coarse and super-coarse dust particles (D > 5 μm), providing essential constraints for dust life cycle studies and climate model evaluation.  more » « less
Award ID(s):
2232138
PAR ID:
10655440
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Remote Sensing of Environment of Elsevier
Date Published:
Journal Name:
Remote Sensing of Environment
Volume:
332
Issue:
C
ISSN:
0034-4257
Page Range / eLocation ID:
115083
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. In this study, we developed a novel algorithm based on the collocatedModerate Resolution Imaging Spectroradiometer (MODIS) thermal infrared (TIR)observations and dust vertical profiles from the Cloud–Aerosol Lidar withOrthogonal Polarization (CALIOP) to simultaneously retrieve dust aerosoloptical depth at 10 µm (DAOD10 µm) and the coarse-mode dusteffective diameter (Deff) over global oceans. The accuracy of theDeff retrieval is assessed by comparing the dust lognormal volumeparticle size distribution (PSD) corresponding to retrieved Deff withthe in situ-measured dust PSDs from the AERosol Properties – Dust(AER-D), Saharan Mineral Dust Experiment (SAMUM-2), and Saharan Aerosol Long-Range Transport and Aerosol–Cloud-InteractionExperiment (SALTRACE) fieldcampaigns through case studies. The new DAOD10 µm retrievals wereevaluated first through comparisons with the collocated DAOD10.6 µmretrieved from the combined Imaging Infrared Radiometer (IIR) and CALIOPobservations from our previous study (Zheng et al., 2022). The pixel-to-pixelcomparison of the two DAOD retrievals indicates a good agreement(R∼0.7) and a significant reduction in (∼50 %) retrieval uncertainties largely thanks to the better constraint ondust size. In a climatological comparison, the seasonal and regional(2∘×5∘) mean DAOD10 µm retrievals basedon our combined MODIS and CALIOP method are in good agreement with the twoindependent Infrared Atmospheric Sounding Interferometer (IASI) productsover three dust transport regions (i.e., North Atlantic (NA; R=0.9),Indian Ocean (IO; R=0.8) and North Pacific (NP; R=0.7)). Using the new retrievals from 2013 to 2017, we performed a climatologicalanalysis of coarse-mode dust Deff over global oceans. We found thatdust Deff over IO and NP is up to 20 % smaller than that over NA.Over NA in summer, we found a ∼50 % reduction in the numberof retrievals with Deff>5 µm from 15 to35∘ W and a stable trend of Deff average at 4.4 µm from35∘ W throughout the Caribbean Sea (90∘ W). Over NP inspring, only ∼5 % of retrieved pixels with Deff>5 µm are found from 150 to 180∘ E, whilethe mean Deff remains stable at 4.0 µm throughout eastern NP. To the best of our knowledge, this study is the first to retrieve both DAOD andcoarse-mode dust particle size over global oceans for multiple years. Thisretrieval dataset provides insightful information for evaluating dustlongwave radiative effects and coarse-mode dust particle size in models. 
    more » « less
  2. Abstract Super‐coarse dust particles (diameters >10 μm) are evidenced to be more abundant in the atmosphere than model estimates and contribute significantly to the dust climate impacts. Since super‐coarse dust accounts for less dust extinction in the visible‐to‐near‐infrared (VIS‐NIR) than in the thermal infrared (TIR) spectral regime, they are suspected to be underestimated by remote sensing instruments operates only in VIS‐NIR, including Aerosol Robotic Networks (AERONET), a widely used data set for dust model validation. In this study, we perform a radiative closure assessment using the AERONET‐retrieved size distribution in comparison with the collocated Atmospheric Infrared Sounder (AIRS) TIR observations with comprehensive uncertainty analysis. The consistently warm bias in the comparisons suggests a potential underestimation of super‐coarse dust in the AERONET retrievals due to the limited VIS‐NIR sensitivity. An extra super‐coarse mode included in the AERONET‐retrieved size distribution helps improve the TIR closure without deteriorating the retrieval accuracy in the VIS‐NIR. 
    more » « less
  3. Abstract Precipitation plays an important role in cloud and aerosol processes over the Southern Ocean (SO). The main objective of this study is to characterize SO precipitation properties associated with SO stratocumulus clouds. We use data from the Southern Ocean Clouds Radiation Aerosol Transport Experimental Study (SOCRATES), and leverage observations from airborne radar, lidar, and in situ probes. We find that for the cold‐topped clouds (cloud‐top‐temperature <0°C), the phase of precipitation with reflectivity >0 dBZ is predominantly ice, while reflectivity < −10 dBZ is predominantly liquid. Liquid‐phase precipitation properties are retrieved where radar and lidar are zenith‐pointing. Power‐law relationships between reflectivity (Z) and rain rate (R) are developed, and the derived Z–R relationships show vertical dependence and sensitivity to the presence of droplets with diameters between 10 and 40 μm. Using derived Z–R relationships, a reflectivity‐velocity (ZV) retrieval method, and a radar‐lidar retrieval method, we derive rain rate and other precipitation properties. The retrieved rain rate from all three methods shows good agreement with in‐situ aircraft estimates, with rain rates typically being quite light (<0.1 mm hr−1). We examine the vertical distribution of precipitation properties, and find that rain rate, precipitation number concentration, and precipitation liquid water all decrease as one gets closer to the surface, while precipitation size and distribution width increases. We also examine how cloud base rain rate (RCB) depends on cloud depth (H) and aerosol concentration (Na) for particles with a diameter greater than 70 nm, and find thatRCBis proportional to . 
    more » « less
  4. Abstract We examine the distribution of aerosol optical depth (AOD) across 27,707 northern hemisphere (NH) midlatitude cyclones for 2005–2018 using retrievals from the Moderate Resolution Spectroradiometer (MODIS) sensor on the Aqua satellite. Cyclone‐centered composites show AOD enhancements of 20%–45% relative to background conditions in the warm conveyor belt (WCB) airstream. Fine mode AOD accounts for 68% of this enhancement annually. Relative to background conditions, coarse mode AOD is enhanced by more than a factor of two near the center of the composite cyclone, co‐located with high surface wind speeds. Within the WCB, MODIS AOD maximizes in spring, with a secondary maximum in summer. Cyclone‐centered composites of AOD from the Modern Era Retrospective analysis for Research and Applications, version 2 Global Modeling Initiative (M2GMI) simulation reproduce the magnitude and seasonality of the MODIS AOD composites and enhancements. M2GMI simulations show that the AOD enhancement in the WCB is dominated by sulfate (37%) and organic aerosol (25%), with dust and sea salt each accounting for 15%. MODIS and M2GMI AOD are 60% larger in North Pacific WCBs compared to North Atlantic WCBs and show a strong relationship with anthropogenic pollution. We infer that NH midlatitude cyclones account for 355 Tg yr−1of sea salt aerosol emissions annually, or 60% of the 30–80°N total. We find that deposition within WCBs is responsible for up to 35% of the total aerosol deposition over the NH ocean basins. Furthermore, the cloudy environment of WCBs leads to efficient secondary sulfate production. 
    more » « less
  5. null (Ed.)
    Identifying dust aerosols from passive satellite images is of great interest for many applications. In this study, we developed five different machine-learning (ML) based algorithms, including Logistic Regression, K Nearest Neighbor, Random Forest (RF), Feed Forward Neural Network (FFNN), and Convolutional Neural Network (CNN), to identify dust aerosols in the daytime satellite images from the Visible Infrared Imaging Radiometer Suite (VIIRS) under cloud-free conditions on a global scale. In order to train the ML algorithms, we collocated the state-of-the-art dust detection product from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) with the VIIRS observations along the CALIOP track. The 16 VIIRS M-band observations with the center wavelength ranging from deep blue to thermal infrared, together with solar-viewing geometries and pixel time and locations, are used as the predictor variables. Four different sets of training input data are constructed based on different combinations of VIIRS pixel and predictor variables. The validation and comparison results based on the collocated CALIOP data indicate that the FFNN method based on all available predictor variables is the best performing one among all methods. It has an averaged dust detection accuracy of about 81%, 89%, and 85% over land, ocean and whole globe, respectively, compared with collocated CALIOP. When applied to off-track VIIRS pixels, the FFNN method retrieves geographical distributions of dust that are in good agreement with on-track results as well as CALIOP statistics. For further evaluation, we compared our results based on the ML algorithms to NOAA’s Aerosol Detection Product (ADP), which is a product that classifies dust, smoke, and ash using physical-based methods. The comparison reveals both similarity and differences. Overall, this study demonstrates the great potential of ML methods for dust detection and proves that these methods can be trained on the CALIOP track and then applied to the whole granule of VIIRS granule. 
    more » « less