skip to main content


Title: Tracking of Tropical Intraseasonal Convective Anomalies: 1. Seasonality of the Tropical Intraseasonal Oscillations
Abstract

A tracking algorithm based upon a multiple object tracking method is developed to identify, track, and classify Tropical Intraseasonal Oscillations (TISO) on the basis of their direction of propagation. Daily National Oceanic and Atmospheric Administration Outgoing Longwave Radiation anomalies from 1979–2017 are Lanczos band‐pass filtered for the intraseasonal time scale (20–100 days) and spatially averaged with nine neighboring points to get spatially smoothed anomalies over large spatial scales (~105km2). TISO events are tracked by using a two‐stage Kalman filter predictor‐corrector method. Two dominant components of the TISO (Eastward propagating and Northward propagating) are classified, and it is found that TISO remains active throughout the year. Eastward‐propagating TISO events occur from November to April with a phase speed of ~4 m/s and northward‐propagating TISO events occur from May to October with a phase speed of ~2.5 m/s in both the Indian and Pacific Ocean basins. Composites of the mean background states (wind; sea surface temperature, SST; and moisture) reveal that the co‐occurrence of warm SST and mean westerly zonal wind plays an important role in the direction of propagation and the geographical location of TISO events. In mean state sensitivity experiments with Sp‐CAM4, we have found that the seasonality of TISO in terms of the geographical location of occurrences and direction of propagation is primarily associated with the annual march of the maximum SST and low level zonal wind which tends to follow the SST.

 
more » « less
NSF-PAR ID:
10375136
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
125
Issue:
3
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We study the adjustment of the tropical atmosphere to localized surface heating using a Lagrangian atmospheric model (LAM) that simulates a realistic Madden–Julian oscillation (MJO)—the dominant, eastward-propagating mode of tropical intraseasonal variability modulating atmospheric convection. Idealized warm sea surface temperature (SST) anomalies of different aspect ratios and magnitudes are imposed in the equatorial Indian Ocean during MJO-neutral conditions and then maintained for 15 days. The experiments then continue for several more months. Throughout these experiments, we observe a robust generation of an MJO event, evident in precipitation, velocity, temperature, and moisture fields, which becomes a key element of atmospheric adjustment along with the expected Kelvin and Rossby waves. The MJO circulation pattern gradually builds up during the first week, and then starts to propagate eastward at a speed of 5–7 m s−1. The upper-level quadrupole circulation characteristic of the MJO becomes evident around day 14, with two anticyclonic gyres generated by the Gill-type response to convective heating and two cyclonic gyres forced by the excited Kelvin waves and extratropical Rossby wave trains. A moisture budget analysis shows that the eastward propagation of the MJO is controlled largely by the anomalous advection of moisture and by the residual between anomalous moisture accumulation due to converging winds and precipitation. The initial MJO event is followed by successive secondary events, maintaining the MJO for several more cycles. Thus, this study highlights the fundamental role that the MJO can play in the adjustment of the moist equatorial atmosphere to localized surface heating.

     
    more » « less
  2. Abstract

    Northward propagation of boreal summer intraseasonal oscillation (BSISO) over the Western North Pacific (WNP) has significant impacts on extreme events over Asia and Europe. Here we test hypotheses that northward propagation mechanisms over the WNP may differ from those over the Indian Ocean (IO) by performing numerical experiments with changing mean states through lowering the Tibetan Plateau (TP). Our results suggest that air‐sea interaction plays a dominant role in the propagation over the WNP, whereas the mean vertical wind shear mechanism is the major driver over the IO. Lowering TP significantly reduces sea surface temperature (SST) anomalies to the north of BSISO center due to the enhanced surface wind and latent heat flux anomalies. This air‐sea interaction reduces upward transport of heat and moisture from surface to lower troposphere, weakening the northward propagation over the WNP. This study implies changes in SST patterns under global warming may influence BSISO propagation.

     
    more » « less
  3. Abstract

    Boreal summer intraseasonal oscillation (BSISO) profoundly impacts Northern Hemisphere monsoon onsets and breaks, tropical cyclones, and many climate extremes. BSISO exhibits more complex propagation patterns than the dominant eastward propagation of the Madden‐Julian Oscillation. Previous studies have extensively examined the dominant northeastward propagating BSISO mode and its northward component, but this mode only accounts for about half of the total cases. We conducted an objective cluster analysis of the two‐dimensional BSISO propagation and revealed two new forms of BSISO propagation besides the northeastward propagation: the dipolar northward propagation and the eastward expansion. We investigate processes governing the different propagation forms using moisture tendency analysis. We show that the propagation diversity is related to BSISO’s circulation structural asymmetries and the associated moistening processes. The Rossby‐wave component in the background zonal wind shear favors northward propagation while the Kelvin‐wave component favors eastward propagation. The circulation differences are affected by the variation of background states, especially those season‐dependent variations. The results provide insights into the BSISO diversity and potential precursors for foreseeing BSISO propagation.

     
    more » « less
  4. Intermediate-depth intraseasonal variability (ISV) at a 20–90-day period, as detected in velocity measurements from seven subsurface moorings in the tropical western Pacific, is interpreted in terms of equatorial Rossby waves. The moorings were deployed between 08 and 7.58N along 1428E from September 2014 to October 2015. The strongest ISV energy at 1200m occurs at 4.58N. Peak energy at 4.58N is also seen in an eddy-resolving global circulation model. An analysis of the model output identifies the source of the ISV as short equatorial Rossby waves with westward phase speed but southeastward and downward group velocity. Additionally, it is shown that a superposition of first three baroclinic modes is required to represent the ISV energy propagation. Further analysis using a 1.5-layer shallow water model suggests that the first meridional mode Rossby wave accounts for the specific meridional distribution of ISV in the western Pacific. The same model suggests that the tilted coastlines of Irian Jaya and Papua New Guinea, which lie to the south of the moorings, shift the location of the northern peak of meridional velocity oscillation from 38N to near 4.58N. The tilt of this boundary with respect to a purely zonal alignment therefore needs to be taken into account to explain this meridional shift of the peak. Calculation of the barotropic conversion rate indicates that the intraseasonal kinetic energy below 1000m can be transferred into the mean flows, suggesting a possible forcing mechanism for intermediate-depth zonal jets. 
    more » « less
  5. Abstract

    Recent observations have indicated significant modulation of the Madden–Julian oscillation (MJO) by the phase of the stratospheric quasi-biennial oscillation (QBO) during boreal winter. Composites of the MJO show that upper-tropospheric ice cloud fraction and water vapor anomalies are generally collocated, and that an eastward tilt with height in cloud fraction exists. Through radiative transfer calculations, it is shown that ice clouds have a stronger tropospheric radiative forcing than do water vapor anomalies, highlighting the importance of incorporating upper-tropospheric–lower-stratospheric processes into simple models of the MJO. The coupled troposphere–stratosphere linear model previously developed by the authors is extended by including a mean wind in the stratosphere and a prognostic equation for cirrus clouds, which are forced dynamically and allowed to modulate tropospheric radiative cooling, similar to the effect of tropospheric water vapor in previous formulations. Under these modifications, the model still produces a slow, eastward-propagating mode that resembles the MJO. The sign of zonal mean wind in the stratosphere is shown to control both the upward wave propagation and tropospheric vertical structure of the mode. Under varying stratospheric wind and interactive cirrus cloud radiation, the MJO-like mode has weaker growth rates under stratospheric westerlies than easterlies, consistent with the observed MJO–QBO relationship. These results are directly attributable to an enhanced barotropic mode under QBO easterlies. It is also shown that differential zonal advection of cirrus clouds leads to weaker growth rates under stratospheric westerlies than easterlies. Implications and limitations of the linear theory are discussed.

    Significance Statement

    Recent observations have shown that the strength of the Madden–Julian oscillation (MJO), a global-scale envelope of wind and rain that slowly moves eastward in the tropics and dominates global-weather variations on time scales of around a month, is strongly influenced by the direction of the winds in the lower stratosphere, the layer of the atmosphere that lies above where weather occurs. So far, modeling studies have been unable to reproduce this connection in global climate models. The purpose of this study is to investigate the mechanisms through which the stratosphere can modulate the MJO, by using simple theoretical models. In particular, we point to the role that ice clouds high in the atmosphere play in influencing the MJO.

     
    more » « less