skip to main content

Title: Thunderstorms Producing Sferic‐Geolocated Gamma‐Ray Flashes Detected by TETRA‐II

The terrestrial gamma‐ray flash (TGF) and Energetic Thunderstorm Rooftop Array (TETRA‐II) detected 22 X‐ray/gamma‐ray flash events associated with lightning between October 2015 and March 2019 across three ground‐based detector locations in subtropical and tropical climates in Louisiana, Puerto Rico, and Panama. Each detector array consists of a set of bismuth germanate scintillators that record X‐ray and gamma‐ray bursts over the energy range 50 keV–6 MeV (million electron volts). TETRA‐II events have characteristics similar to both X‐ray bursts associated with lightning leaders and TGFs: sub‐millisecond duration, photons up to MeV energies, and association with nearby lightning (typically within 3 km). About 20 of the 22 events are geolocated to individual lightning strokes via spatiotemporally coincident sferics. An examination of radar reflectivity and derived products related to events located within the Next Generation Weather Radar (NEXRAD) monitoring region indicates that events occur within mature cells of severe and non‐severe multicellular and squall line thunderstorms, with core echo tops which are at or nearing peak altitude. Events occur in both high lightning frequency thunderstorm cells and low lightning frequency cells. Events associated with high frequency cells occur within 5 min of significant lightning jumps. Among NEXRAD‐monitored events, hail is present within 8 km and 5 min of all except a single low‐altitude cold weather thunderstorm. An association is seen with maximum thunderstorm development, lightning jumps, and hail cells, indicating that the TETRA‐II X‐ray/gamma‐ray events are associated with the peak storm electrification and development of electric fields necessary for the acceleration of electrons to high energies.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In its first 2 years of operation, the ground‐based Terrestrial gamma ray flash and Energetic Thunderstorm Rooftop Array (TETRA)‐II array of gamma ray detectors has recorded 22 bursts of gamma rays of millisecond‐scale duration associated with lightning. In this study, we present the TETRA‐II observations detected at the three TETRA‐II ground‐level sites in Louisiana, Puerto Rico, and Panama together with the simultaneous radio frequency signals from the lightning data sets VAISALA Global Lightning Dataset, VAISALA National Lightning Detection Network, Earth Networks Total Lightning Network, and World Wide Lightning Location Network. The relative timing between the gamma ray events and the lightning activity is a key parameter for understanding the production mechanism(s) of the bursts. The gamma ray time profiles and their correlation with radio sferics suggest that the gamma ray events are initiated by lightning leader activity and are produced near the last stage of lightning leader channel development prior to the lightning return stroke.

    more » « less
  2. Abstract

    Terrestrial gamma‐ray flashes (TGFs) are bright bursts of gamma rays produced by thunderstorms, typically observed by spacecraft in the low‐Earth orbit. Unfortunately, it has been difficult to disentangle the source altitude and the width and direction of the gamma‐ray beam using single point spacecraft measurements, which has hampered attempts to constrain TGF models. Polarimetry of astrophysical sources has been of interest for many decades, which raises the question: Do TGFs and X‐rays from lightning have observable polarization, and if so, what would this polarization tell us about their source? REAM Monte Carlo code has been modified to record the linear polarization of X‐rays and gamma rays as a function of source altitude and beam geometry. It is found that polarization degree of a 20‐km narrow beam of TGF is substantially different from a 15‐km‐wide beam, which could be used to constrain the source geometry of TGFs. However, due to the low fluence of these events in space, detecting this level of polarization would be challenging. It is also found that low‐altitude TGFs (source at 3.5 km) produce polarizations up to about 8%; however, detectors need to be very close to the source region. Furthermore, very low altitude ground‐level TGFs and X‐rays showed a maximum polarization of 13% on the ground, of which the TGF's fluence was large enough for polarimetry. In addition, polarization reached its maximum further away from thezaxis as the TGF's beam broadened. The dominant mechanism of the polarization was found to be Compton scattering.

    more » « less
  3. Abstract

    Geostationary satellite imagers provide historical and near-real-time observations of cloud-top patterns that are commonly associated with severe convection. Environmental conditions favorable for severe weather are thought to be represented well by reanalyses. Predicting exactly where convection and costly storm hazards like hail will occur using models or satellite imagery alone, however, is extremely challenging. The multivariate combination of satellite-observed cloud patterns with reanalysis environmental parameters, linked to Next Generation Weather Radar (NEXRAD) estimated maximum expected size of hail (MESH) using a deep neural network (DNN), enables estimation of potentially severe hail likelihood for any observed storm cell. These estimates are made where satellites observe cold clouds, indicative of convection, located in favorable storm environments. We seek an approach that can be used to estimate climatological hailstorm frequency and risk throughout the historical satellite data record. Statistical distributions of convective parameters from satellite and reanalysis show separation between nonsevere and severe hailstorm classes for predictors that include overshooting cloud-top temperature and area characteristics, vertical wind shear, and convective inhibition. These complex, multivariate predictor relationships are exploited within a DNN to produce a likelihood estimate with a critical success index of 0.511 and Heidke skill score of 0.407, which is exceptional among analogous hail studies. Furthermore, applications of the DNN to case studies demonstrate good qualitative agreement between hail likelihood and MESH. These hail classifications are aggregated across an 11-yr Geostationary Operational Environmental Satellite (GOES) image database fromGOES-12/13to derive a hail frequency and severity climatology, which denotes the central Great Plains, the Midwest, and northwestern Mexico as being the most hail-prone regions within the domain studied.

    more » « less
  4. Abstract In recent years, hail accumulations from thunderstorms have occurred frequently enough to catch the attention of the National Weather Service, the general public, and news agencies. Despite the extreme nature of these thunderstorms, no mechanism is currently in place to obtain adequate reports, measurements, or forecasts of accumulated hail depth. To better identify and forecast hail accumulations, the Colorado Hail Accumulation from Thunderstorms (CHAT) project was initiated in 2016 with the goals of collecting improved and more frequent hail depth reports on the ground as well as studying characteristics of storms that produce hail accumulations in Colorado. A desired outcome of this research is to identify predictors for hail-producing thunderstorms typically occurring along the Colorado Front Range that might be used as operational nowcast products in the future. During the 2016 convective season, we asked amateur meteorologists to send general information, photos, and videos on hail depth using social media. They submitted over 58 reports in Colorado with information on location, time, depth, and areal coverage of hail accumulations. We have analyzed dual-polarization radar and lightning mapping array data from 32 thunderstorms in Colorado, which produced between 0.5 and 50 cm of hail accumulation on the ground, to identify characteristics unique to storms with hail accumulations. This preliminary analysis shows how enhanced in-cloud hail presence and surface accumulation can be tracked throughout the lifetime of a thunderstorm using dual-polarization radar and lightning data, and how hail accumulation events are associated with large in-cloud ice water content, long hailfall duration, or a combination of these. 
    more » « less
  5. Abstract

    The scientific community has long acknowledged the importance of high-temporal-resolution radar observations to advance science research and improve high-impact weather prediction. Development of innovative rapid-scan radar technologies over the past two decades has enabled radar volume scans of 10–60 s compared to 3–5 min with traditional parabolic dish research radars and the WSR-88D radar network. This review examines the impact of rapid-scan radar technology, defined as radars collecting volume scans in 1 min or less, on atmospheric science research spanning different subdisciplines and evaluates the strengths and weaknesses of the use of rapid-scan radars. In particular, a significant body of literature has accumulated for tornado and severe thunderstorm research and forecasting applications, in addition to a growing number of studies of convection. Convection research has benefited substantially from more synchronous vertical views, but could benefit more substantially by leveraging multi-Doppler wind retrievals and complementary in situ and remote sensors. In addition, several years of forecast evaluation studies are synthesized from radar testbed experiments, and the benefits of assimilating rapid-scan radar observations are analyzed. Although the current body of literature reflects the considerable utility of rapid-scan radars to science research, a weakness is that limited advancements in understanding of the physical mechanisms behind observed features have been enabled. There is considerable opportunity to bridge the gap in physical understanding with the current technology using coordinated efforts to include rapid-scan radars in field campaigns and expanding the breadth of meteorological phenomena studied.

    Significance Statement

    Recently developed rapid-scan radar technologies, capable of collecting volumetric (i.e., three-dimensional) measurements in 10–60 s, have improved temporal sampling of weather phenomena. This review examines the impact of these radar observations from the past two decades on science research and emerging operational capabilities. Substantial breadth and impact of research is evident for tornado research and forecasting applications, in addition to documentation of other rapidly evolving phenomena associated with deep convection, such as tornadoes, hail, lightning, and tropical cyclones. This review identifies the strengths and weaknesses of how these radars have been used in scientific research to inform future studies, emerging from the increasing availability and capability of rapid-scan radars. In addition, this review synthesizes research that can benefit future operational radar decisions.

    more » « less