We report on the mountain top observation of three terrestrial gamma‐ray flashes (TGFs) that occurred during the summer storm season of 2021. To our knowledge, these are the first TGFs observed in a mountaintop environment and the first published European TGFs observed from the ground. A gamma‐ray sensitive detector was located at the base of the Säntis Tower in Switzerland and observed three unique TGF events with coincident radio sferic data characteristic of TGFs seen from space. We will show an example of a “slow pulse” radio signature (Cummer et al., 2011,
We provide an updated analysis of the gamma ray signature of a terrestrial gamma ray flash (TGF) detected by the Fermi Gamma ray Burst Monitor first reported by Pu et al. (2020,
- PAR ID:
- 10462863
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 128
- Issue:
- 18
- ISSN:
- 2169-897X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract https://doi.org/10.1029/2011GL048099 ; Lu et al., 2011,https://doi.org/10.1029/2010JA016141 ; Pu et al., 2019,https://doi.org/10.1029/2019GL082743 ; Pu et al., 2020,https://doi.org/10.1029/2020GL089427 ), a −EIP (Lyu et al., 2016,https://doi.org/10.1002/2016GL070154 ; Lyu et al., 2021,https://doi.org/10.1029/2021GL093627 ; Wada et al., 2020,https://doi.org/10.1029/2019JD031730 ), and a double peak TGF associated with an extraordinarily powerful and complicated positive‐polarity sferic, where each TGF peak is possibly preceded by a short burst of stepped leader emission. -
Abstract In 2015, Bowers et al. (2018,
https://doi.org/10.1029/2017JD027771 ) detected a terrestrial gamma ray flash (TGF) in Hurricane Patricia from an aircraft flying at 2.6 km through what they argued to be a beam of downward gamma radiation produced by the positron component of the TGF. This paper uses the energy spectrum for gamma rays produced by the positrons of a relativistic runaway electron avalanche as simulated by the REAM code, propagated through a model of the Earth's atmosphere in Geant4, to examine the feasibility of detecting a typical upward TGF through its reverse positron beam at various altitudes on the ground. We find that, with patience, modest‐sized scintillators on mountains as low as 1 km should be able to observe the same TGFs seen from spacecraft. -
Abstract The objective of this comment is to correct two sets of statements in Litwin et al. (2022,
https://doi.org/10.1029/2021JF006239 ), which consider our research work (Bonetti et al., 2018,https://doi.org/10.1098/rspa.2017.0693 ; Bonetti et al., 2020,https://doi.org/10.1073/pnas.1911817117 ). We clarify here that (a) the specific contributing area is defined in the limit of an infinitesimal contour length instead of the product of a reference contour width (Bonetti et al., 2018,https://doi.org/10.1098/rspa.2017.0693 ), and (b) not all solutions obtained from the minimalist landscape evolution model of Bonetti et al. (2020,https://doi.org/10.1073/pnas.1911817117 ) are rescaled copies of each other. We take this opportunity to demonstrate that the boundary conditions impact the obtained solutions, which has not been considered in the dimensional analysis of Litwin et al. (2022,https://doi.org/10.1029/2021JF006239 ). We clarify this point by using dimensional analysis and numerical simulations for a square domain, where only one horizontal length scale (the side lengthl ) enters the physical law. -
Abstract We show that atmospheric gravity waves can generate plasma ducts and irregularities in the plasmasphere using the coupled SAMI3/WACCM‐X model. We find the equatorial electron density is irregular as a function of longitude which is consistent with CRRES measurements (Clilverd et al., 2007,
https://doi.org/10.1029/2007ja012416 ). We also find that plasma ducts can be generated forL ‐shells in the range 1.5–3.0 with lifetimes of ∼ 0.5 hr; this is in line with observations of ducted VLF wave propagation with lifetimes of 0.5–2.0 hr (Clilverd et al., 2008,https://doi.org/10.1029/2007ja012602 ; Singh et al., 1998,https://doi.org/10.1016/s1364-6826(98)00001-7 ). -
Abstract Recent advances in remote sensing of solar‐induced chlorophyll fluorescence (SIF) have garnered wide interest from the biogeoscience and Earth system science communities, due to the observed linearity between SIF and gross primary productivity (GPP) at increasing spatiotemporal scales. Three recent studies, Maguire et al., (2020,
https://doi.org/10.1029/2020GL087858 ), He et al. (2020,https://doi.org/10.1029/2020GL087474 ), and Marrs et al. (2020,https://doi.org/10.1029/2020GL087956 ) highlight a nonlinear relationship between fluorescence and photochemical yields and show empirical evidence for the decoupling of SIF, stomata, and the carbon reactions of photosynthesis. Such mechanistic studies help advance our understanding of what SIF is and what it is not. We argue that these findings are not necessarily contradictory to the linear SIF‐GPP relationship observed at the satellite scale and provide context for where, when, and why fluorescence and photosynthesis diverge at smaller spatiotemporal scales. Understanding scale dependencies of remote sensing data is crucial for interpreting SIF as a proxy for GPP.