skip to main content

Title: Surface resistance to SSVs and SIRVs in pilin deletions of Sulfolobus islandicus

Characterizing the molecular interactions of viruses in natural microbial populations offers insights into virus–host dynamics in complex ecosystems. We identify the resistance ofSulfolobus islandicustoSulfolobusspindle‐shaped virus (SSV9) conferred by chromosomal deletions of pilin genes,pilA1andpilA2that are individually able to complement resistance. Mutants with deletions of bothpilA1andpilA2or the prepilin peptidase, PibD, show the reduction in the number of pilins observed in TEM and reduced surface adherence but still adsorb SSV9. The proteinaceous outer S‐layer proteins, SlaA and SlaB, are not required for adsorption nor infection demonstrating that the S‐layer is not the primary receptor for SSV9 surface binding. Strains lacking both pilins are resistant to a broad panel of SSVs as well as a panel of unrelatedS. islandicusrod‐shaped viruses (SIRVs). Unlike SSV9, we show thatpilA1orpilA2is required for SIRV8 adsorption. In sequencedSulfolobusstrains from around the globe, one copy of eachpilA1andpilA2is maintained and show codon‐level diversification, demonstrating their importance in nature. By characterizing the molecular interactions at the initiation of infection betweenS. islandicusand two different types of viruses we hope to increase the understanding of virus–host interactions in the archaeal domain.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Molecular Microbiology
Page Range / eLocation ID:
p. 718-727
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Virus–host interactions evolve along a symbiosis continuum from antagonism to mutualism. Long-term associations between virus and host, such as those in chronic infection, will select for traits that drive the interaction towards mutualism, especially when susceptible hosts are rare in the population. Virus–host mutualism has been demonstrated in thermophilic archaeal populations where Sulfolobus spindle-shaped viruses (SSVs) provide a competitive advantage to their host Sulfolobus islandicus by producing a toxin that kills uninfected strains. Here, we determine the genetic basis of this killing phenotype by identifying highly transcribed genes in cells that are chronically infected with a diversity of SSVs. We demonstrate that these genes alone confer growth inhibition by being expressed in uninfected cells via a Sulfolobus expression plasmid. Challenge of chronically infected strains with vector-expressed toxins revealed a nested network of cross-toxicity among divergent SSVs, with both broad and specific toxin efficacies. This suggests that competition between viruses and/or their hosts could maintain toxin diversity. We propose that competitive interactions among chronic viruses to promote their host fitness form the basis of virus–host mutualism. This article is part of the theme issue ‘The secret lives of microbial mobile genetic elements’. 
    more » « less
  2. ABSTRACT Theory, simulation, and experimental evolution demonstrate that diversified CRISPR-Cas immunity to lytic viruses can lead to stochastic virus extinction due to a limited number of susceptible hosts available to each potential new protospacer escape mutation. Under such conditions, theory predicts that to evade extinction, viruses evolve toward decreased virulence and promote vertical transmission and persistence in infected hosts. To better understand the evolution of host-virus interactions in microbial populations with active CRISPR-Cas immunity, we studied the interaction between CRISPR-immune Sulfolobus islandicus cells and immune-deficient strains that are infected by the chronic virus SSV9. We demonstrate that Sulfolobus islandicus cells infected with SSV9, and with other related SSVs, kill uninfected, immune strains through an antagonistic mechanism that is a protein and is independent of infectious virus. Cells that are infected with SSV9 are protected from killing and persist in the population. We hypothesize that this infection acts as a form of mutualism between the host and the virus by removing competitors in the population and ensuring continued vertical transmission of the virus within populations with diversified CRISPR-Cas immunity. IMPORTANCE Multiple studies, especially those focusing on the role of lytic viruses in key model systems, have shown the importance of viruses in shaping microbial populations. However, it has become increasingly clear that viruses with a long host-virus interaction, such as those with a chronic lifestyle, can be important drivers of evolution and have large impacts on host ecology. In this work, we describe one such interaction with the acidic crenarchaeon Sulfolobus islandicus and its chronic virus Sulfolobus spindle-shaped virus 9. Our work expands the view in which this symbiosis between host and virus evolved, describing a killing phenotype which we hypothesize has evolved in part due to the high prevalence and diversity of CRISPR-Cas immunity seen in natural populations. We explore the implications of this phenotype in population dynamics and host ecology, as well as the implications of mutualism between this virus-host pair. 
    more » « less
  3. Phages have demonstrated significant potential as therapeutics in bacterial disease control and as diagnostics due to their targeted bacterial host range. Host range has typically been defined by plaque assays; an important technique for therapeutic development that relies on the ability of a phage to form a plaque upon a lawn of monoculture bacteria. Plaque assays cannot be used to evaluate a phage’s ability to recognize and adsorb to a bacterial strain of interest if the infection process is thwarted post-adsorption or is temporally delayed, and it cannot highlight which phages have the strongest adsorption characteristics. Other techniques, such as classic adsorption assays, are required to define a phage’s “adsorptive host range.” The issue shared amongst all adsorption assays, however, is that they rely on the use of a complete bacteriophage and thus inherently describe when all adsorption-specific machinery is working together to facilitate bacterial surface adsorption. These techniques cannot be used to examine individual interactions between a singular set of a phage’s adsorptive machinery (like long tail fibers, short tail fibers, tail spikes, etc.) and that protein’s targeted bacterial surface receptor. To address this gap in knowledge we have developed a high-throughput, filtration-based, bacterial binding assay that can evaluate the adsorptive capability of an individual set of a phage’s adsorption machinery. In this manuscript, we used a fusion protein comprised of an N-terminal bioluminescent tag translationally fused to T4’s long tail fiber binding tip (gp37) to evaluate and quantify gp37’s relative adsorptive strength against the Escherichia coli reference collection (ECOR) panel of 72 Escherichia coli isolates. Gp37 could adsorb to 61 of the 72 ECOR strains (85%) but coliphage T4 only formed plaques on 8 of the 72 strains (11%). Overlaying these two datasets, we were able to identify ECOR strains incompatible with T4 due to failed adsorption, and strains T4 can adsorb to but is thwarted in replication at a step post-adsorption. While this manuscript only demonstrates our assay’s ability to characterize adsorptive capabilities of phage tail fibers, our assay could feasibly be modified to evaluate other adsorption-specific phage proteins. 
    more » « less
  4. null (Ed.)
    A challenge in virology is quantifying relative virulence ( V R ) between two (or more) viruses that exhibit different replication dynamics in a given susceptible host. Host growth curve analysis is often used to mathematically characterize virus–host interactions and to quantify the magnitude of detriment to host due to viral infection. Quantifying V R using canonical parameters, like maximum specific growth rate ( μ max ), can fail to provide reliable information regarding virulence. Although area-under-the-curve (AUC) calculations are more robust, they are sensitive to limit selection. Using empirical data from Sulfolobus Spindle-shaped Virus (SSV) infections, we introduce a novel, simple metric that has proven to be more robust than existing methods for assessing V R . This metric ( I SC ) accurately aligns biological phenomena with quantified metrics to determine V R . It also addresses a gap in virology by permitting comparisons between different non-lytic virus infections or non-lytic versus lytic virus infections on a given host in single-virus/single-host infections. 
    more » « less
  5. Summary

    Coccolithoviruses(EhVs) are large, double‐stranded DNA‐containing viruses that infect the single‐celled, marine coccolithophoreEmiliania huxleyi. Given the cosmopolitan nature and global importance ofE. huxleyias a bloom‐forming, calcifying, photoautotroph,E. huxleyi–EhV interactions play a key role in oceanic carbon biogeochemistry. Virally‐encoded glycosphingolipids (vGSLs) are virulence factors that are produced by the activity of virus‐encoded serine palmitoyltransferase (SPT). Here, we characterize the dynamics, diversity and catalytic production of vGSLs in an array of EhV strains in relation to their SPT sequence composition and explore the hypothesis that they are a determinant of infectivity and host demise. vGSL production and diversity was positively correlated with increased virulence, virus replication rate and lytic infection dynamics in laboratory experiments, but they do not explain the success of less‐virulent EhVs in natural EhV communities. The majority of EhV‐derived SPT amplicon sequences associated with infected cells in the North Atlantic derived from slower infecting, less virulent EhVs. Our lab‐, field‐ and mathematical model‐based data and simulations support ecological scenarios whereby slow‐infecting, less‐virulent EhVs successfully compete in North Atlantic populations ofE. huxleyi, through either the preferential removal of fast‐infecting, virulent EhVs during active infection or by having access to a broader host range.

    more » « less