Direct-acting antiviral agents (DAAs) are known to interfere with various intracellular stages of the hepatitis C virus (HCV) life cycle and have demonstrated efficacy in treating HCV infection. However, DAA monotherapy can lead to drug resistance due to mutations. This paper explores the impact of DAA therapy on HCV dynamics using a multiscale age-structured partial differential equation (PDE) model that incorporates intracellular viral RNA replication within infected cells and two strains of viruses representing a drug-sensitive strain and a drug-resistant mutant variant, respectively. We derived an equivalent ordinary differential equation (ODE) model from the PDE model to simplify mathematical analysis and numerical simulations. We studied the dynamics of the two virus strains before treatment and investigated the impact of mutations on the evolution kinetics of drug-sensitive and drug-resistant viruses, as well as the competition between the two strains during treatment. We also explored the role of DAAs in blocking HCV RNA replication and releasing new virus particles from cells. During treatment, mutations do not significantly influence the dynamics of various virus strains; however, they can generate low-level HCV that may be completely inhibited due to their poor fitness. The fitness of the mutant strain compared to the drug-sensitive strain determines which strain dominates the virus population. We also investigated the prevalence and drug resistance evolution of HCV variants during DAA treatment.
This content will become publicly available on July 30, 2025
Marine microbes are important in biogeochemical cycling, but the nature and magnitude of their contributions are influenced by their associated viruses. In the presence of a lytic virus, cells that have evolved resistance to infection have an obvious fitness advantage over relatives that remain susceptible. However, susceptible cells remain extant in the wild, implying that the evolution of a fitness advantage in one dimension (virus resistance) must be accompanied by a fitness cost in another dimension. Identifying costs of resistance is challenging because fitness is context‐dependent. We examined the context dependence of fitness costs in isolates of the picophytoplankton genus
- Award ID(s):
- 2129697
- PAR ID:
- 10528973
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Environmental Microbiology
- Volume:
- 26
- Issue:
- 8
- ISSN:
- 1462-2912
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Virus–host interactions evolve along a symbiosis continuum from antagonism to mutualism. Long-term associations between virus and host, such as those in chronic infection, will select for traits that drive the interaction towards mutualism, especially when susceptible hosts are rare in the population. Virus–host mutualism has been demonstrated in thermophilic archaeal populations where Sulfolobus spindle-shaped viruses (SSVs) provide a competitive advantage to their host Sulfolobus islandicus by producing a toxin that kills uninfected strains. Here, we determine the genetic basis of this killing phenotype by identifying highly transcribed genes in cells that are chronically infected with a diversity of SSVs. We demonstrate that these genes alone confer growth inhibition by being expressed in uninfected cells via a Sulfolobus expression plasmid. Challenge of chronically infected strains with vector-expressed toxins revealed a nested network of cross-toxicity among divergent SSVs, with both broad and specific toxin efficacies. This suggests that competition between viruses and/or their hosts could maintain toxin diversity. We propose that competitive interactions among chronic viruses to promote their host fitness form the basis of virus–host mutualism. This article is part of the theme issue ‘The secret lives of microbial mobile genetic elements’.more » « less
-
Abstract Characterizing the molecular interactions of viruses in natural microbial populations offers insights into virus–host dynamics in complex ecosystems. We identify the resistance of
Sulfolobus islandicus toSulfolobus spindle‐shaped virus (SSV9) conferred by chromosomal deletions of pilin genes,pilA1 andpilA2 that are individually able to complement resistance. Mutants with deletions of bothpilA1 andpilA2 or the prepilin peptidase, PibD, show the reduction in the number of pilins observed in TEM and reduced surface adherence but still adsorb SSV9. The proteinaceous outer S‐layer proteins, SlaA and SlaB, are not required for adsorption nor infection demonstrating that the S‐layer is not the primary receptor for SSV9 surface binding. Strains lacking both pilins are resistant to a broad panel of SSVs as well as a panel of unrelatedS. islandicus rod‐shaped viruses (SIRVs). Unlike SSV9, we show thatpilA1 orpilA2 is required for SIRV8 adsorption. In sequencedSulfolobus strains from around the globe, one copy of eachpilA1 andpilA2 is maintained and show codon‐level diversification, demonstrating their importance in nature. By characterizing the molecular interactions at the initiation of infection betweenS. islandicus and two different types of viruses we hope to increase the understanding of virus–host interactions in the archaeal domain. -
Wahl, Lindi (Ed.)Like many viruses, Hepatitis C Virus (HCV) has a high mutation rate, which helps the virus adapt quickly, but mutations come with fitness costs. Fitness costs can be studied by different approaches, such as experimental or frequency-based approaches. The frequency-based approach is particularly useful to estimate in vivo fitness costs, but this approach works best with deep sequencing data from many hosts are. In this study, we applied the frequency-based approach to a large dataset of 195 patients and estimated the fitness costs of mutations at 7957 sites along the HCV genome. We used beta regression and random forest models to better understand how different factors influenced fitness costs. Our results revealed that costs of nonsynonymous mutations were three times higher than those of synonymous mutations, and mutations at nucleotides A or T had higher costs than those at C or G. Genome location had a modest effect, with lower costs for mutations in HVR1 and higher costs for mutations in Core and NS5B. Resistance mutations were, on average, costlier than other mutations. Our results show that in vivo fitness costs of mutations can be site and virus specific, reinforcing the utility of constructing in vivo fitness cost maps of viral genomes.more » « less
-
Many chloroviruses replicate in Chlorella variabilis algal strains that are ex-endosymbionts isolated from the protozoan Paramecium bursaria, including the NC64A and Syngen 2-3 strains. We noticed that indigenous water samples produced a higher number of plaque-forming viruses on C. variabilis Syngen 2-3 lawns than on C. variabilis NC64A lawns. These observed differences led to the discovery of viruses that replicate exclusively in Syngen 2-3 cells, named Only Syngen (OSy) viruses. Here, we demonstrate that OSy viruses initiate infection in the restricted host NC64A by synthesizing some early virus gene products and that approximately 20% of the cells produce a small number of empty virus capsids. However, the infected cells did not produce infectious viruses because the cells were unable to replicate the viral genome. This is interesting because all previous attempts to isolate host cells resistant to chlorovirus infection were due to changes in the host receptor for the virus.more » « less