skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High‐Latitude Electrodynamics Specified in SAMI3 Using AMPERE Field‐Aligned Currents
Abstract A new technique has been developed to determine the high‐latitude electric potential from observed field‐aligned currents (FACs) and modeled ionospheric conductances. FACs are observed by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE), while the conductances are modeled by Sami3 is Also a Model of the Ionosphere (SAMI3). This is a development of the Magnetosphere‐Ionosphere Coupling approach first demonstrated by Merkin and Lyon (2010),https://doi.org/10.1029/2010ja015461. An advantage of using SAMI3 is that the model can be used to predict total electron content (TEC), based on the AMPERE‐derived potential solutions. 23 May 2014 is chosen as a case study to assess the new technique for a moderately disturbed case (min Dst: −36 nT, max AE: 909 nT) with good GPS data coverage. The new AMPERE/SAMI3 solutions are compared against independent GPS‐based TEC observations from the Multi‐Instrument Data Analysis Software (MIDAS) by Mitchell and Spencer (2003), and against Defense Meteorological Satellite Program (DMSP) ion drift data. The comparison shows excellent agreement between the location of the tongue of ionization in the MIDAS GPS data and the AMPERE/SAMI3 potential pattern, and good overall agreement with DMSP drifts. SAMI3 predictions of high‐latitude TEC are much improved when using the AMPERE‐derived potential as compared to Weimer's (2005),https://doi.org/10.1029/2005ja011270model. The two potential models have substantial differences, with Weimer producing an average 77 kV cross‐cap potential versus 60 kV for the AMPERE‐derived potential. The results indicate that the 66‐satellite Iridium constellation provides sufficient resolution of FACs to estimate large‐scale ionospheric convection as it impacts TEC.  more » « less
Award ID(s):
1922930 2002574
PAR ID:
10375237
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Space Weather
Volume:
20
Issue:
1
ISSN:
1542-7390
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The polarFregion ionosphere frequently exhibits sporadic variability (e.g., Meek, 1949,https://doi.org/10.1029/JZ054i004p00339; Hill, 1963,https://doi.org/10.1175/1520‐0469(1963)020<0492:SEOLII>2.0.CO;2). Recent satellite data analysis (Noja et al., 2013,https://doi.org/10.1002/rds.20033; Chartier et al., 2018,https://doi.org/10.1002/2017JA024811) showed that the high‐latitudeFregion ionosphere exhibits sporadic enhancements more frequently in January than in July in both the northern and southern hemispheres. The same pattern has been seen in statistics of the degradation and total loss of GPS service onboard low‐Earth orbit satellites (Xiong et al. 2018,https://doi.org/10.5194/angeo‐36‐679‐2018). Here, we confirm the existence of this annual pattern using ground GPS‐based images of TEC from the MIDAS algorithm. Images covering January and July 2014 confirm that the high‐latitude (>70 MLAT)Fregion exhibits a substantially larger range of values in January than in July in both the northern and southern hemispheres. The range of TEC values observed in the polar caps is 38–57 TECU (north‐south) in January versus 25–37 TECU in July. First‐principle modeling using SAMI3 reproduces this pattern, and indicates that it is caused by an asymmetry in plasma levels (30% higher in January than in July across both polar caps), as well as 17% longer O+plasma lifetimes in northern hemisphere winter, compared to southern hemisphere winter. 
    more » « less
  2. Abstract We introduce a new framework called Machine Learning (ML) based Auroral Ionospheric electrodynamics Model (ML‐AIM). ML‐AIM solves a current continuity equation by utilizing the ML model of Field Aligned Currents of Kunduri et al. (2020,https://doi.org/10.1029/2020JA027908), the FAC‐derived auroral conductance model of Robinson et al. (2020,https://doi.org/10.1029/2020JA028008), and the solar irradiance conductance model of Moen and Brekke (1993,https://doi.org/10.1029/92gl02109). The ML‐AIM inputs are 60‐min time histories of solar wind plasma, interplanetary magnetic fields (IMF), and geomagnetic indices, and its outputs are ionospheric electric potential, electric fields, Pedersen/Hall currents, and Joule Heating. We conduct two ML‐AIM simulations for a weak geomagnetic activity interval on 14 May 2013 and a geomagnetic storm on 7–8 September 2017. ML‐AIM produces physically accurate ionospheric potential patterns such as the two‐cell convection pattern and the enhancement of electric potentials during active times. The cross polar cap potentials (ΦPC) from ML‐AIM, the Weimer (2005,https://doi.org/10.1029/2004ja010884) model, and the Super Dual Auroral Radar Network (SuperDARN) data‐assimilated potentials, are compared to the ones from 3204 polar crossings of the Defense Meteorological Satellite Program F17 satellite, showing better performance of ML‐AIM than others. ML‐AIM is unique and innovative because it predicts ionospheric responses to the time‐varying solar wind and geomagnetic conditions, while the other traditional empirical models like Weimer (2005,https://doi.org/10.1029/2004ja010884) designed to provide a quasi‐static ionospheric condition under quasi‐steady solar wind/IMF conditions. Plans are underway to improve ML‐AIM performance by including a fully ML network of models of aurora precipitation and ionospheric conductance, targeting its characterization of geomagnetically active times. 
    more » « less
  3. Abstract New, open access tools have been developed to validate ionospheric models in terms of technologically relevant metrics. These are ionospheric errors on GPS 3D position, HF ham radio communications, and peak F‐region density. To demonstrate these tools, we have used output from Sami is Another Model of the Ionosphere (SAMI3) driven by high‐latitude electric potentials derived from Active Magnetosphere and Planetary Electrodynamics Response Experiment, covering the first available month of operation using Iridium‐NEXT data (March 2019). Output of this model is now available for visualization and download viahttps://sami3.jhuapl.edu. The GPS test indicates SAMI3 reduces ionospheric errors on 3D position solutions from 1.9 m with no model to 1.6 m on average (maximum error: 14.2 m without correction, 13.9 m with correction). SAMI3 predicts 55.5% of reported amateur radio links between 2–30 MHz and 500–2,000 km. Autoscaled and then machine learning “cleaned” Digisonde NmF2 data indicate a 1.0 × 1011 el. m3median positive bias in SAMI3 (equivalent to a 27% overestimation). The positive NmF2 bias is largest during the daytime, which may explain the relatively good performance in predicting HF links then. The underlying data sources and software used here are publicly available, so that interested groups may apply these tests to other models and time intervals. 
    more » « less
  4. Abstract We analyze three substorms that occur on (1) 9 March 2008 05:14 UT, (2) 26 February 2008 04:05 UT, and (3) 26 February 2008 04:55 UT. Using ACE solar wind velocity and interplanetary magnetic fieldBzvalues, we calculate the rectified (southwardBz) solar wind voltage propagated to the magnetosphere. The solar wind conditions for the two events were vastly different, 300 kV for 9 March 2008 substorm, compared to 50 kV for 26 February 2008. The voltage is input to a nonlinear physics‐based model of the magnetosphere called WINDMI. The output is the westward auroral electrojet current which is proportional to the auroral electrojet (AL) index from World Data Center for Geomagnetism Kyoto and the SuperMAG auroral electrojet index (SML). Substorm onset times are obtained from the superMAG substorm database, Pu et al. (2010,https://doi.org/10.1029/2009JA014217), Lui (2011,https://doi.org/10.1029/2010JA016078) and synchronized to Time History of Events and Macroscale Interactions during Substorms satellite data. The timing of onset, model parameters, and intermediate state space variables are analyzed. The model onsets occurred about 5 to 10 min earlier than the reported onsets. Onsets occurred when the geotail current in the WINDMI model reached a critical threshold of 6.2 MA for the 9 March 2008 event, while, in contrast, a critical threshold of 2.1 MA was obtained for the two 26 February 2008 events. The model estimates 1.99 PJ of total energy transfer during the 9 March 2008 event, with 0.95 PJ deposited in the ionosphere. The smaller events on 26 February 2008 resulted in a total energy transfer of 0.37 PJ according to the model, with 0.095 PJ deposited in the ionosphere. 
    more » « less
  5. Abstract We show that atmospheric gravity waves can generate plasma ducts and irregularities in the plasmasphere using the coupled SAMI3/WACCM‐X model. We find the equatorial electron density is irregular as a function of longitude which is consistent with CRRES measurements (Clilverd et al., 2007,https://doi.org/10.1029/2007ja012416). We also find that plasma ducts can be generated forL‐shells in the range 1.5–3.0 with lifetimes of ∼ 0.5 hr; this is in line with observations of ducted VLF wave propagation with lifetimes of 0.5–2.0 hr (Clilverd et al., 2008,https://doi.org/10.1029/2007ja012602; Singh et al., 1998,https://doi.org/10.1016/s1364-6826(98)00001-7). 
    more » « less