skip to main content


Title: Hydrology of a Perennial Firn Aquifer in Southeast Greenland: An Overview Driven by Field Data
Abstract

Firn aquifers have been discovered across regions of the Greenland ice sheet with high snow accumulation and melt rates, but the processes and rates that sustain these aquifers have not been fully quantified or supported by field data. A quantitative description of the hydrology of a firn aquifer upslope from Helheim Glacier that integrates field measurements is presented to constrain melt and recharge rates and timing, temporal variations in temperature and water levels, and liquid‐water residence time. Field measurements include weather data, firn temperatures, water levels, geochemical tracers, and airborne radar data. Field measurements show that once the firn column is temperate (0°C), meltwater from the surface infiltrates to the water table in less than 2 days and raises the water table. Average recharge is 22 cm/year (lower 95% confidence interval is 13 cm/year and upper 95% confidence interval is 33 cm/year). Meltwater within the recently formed aquifer, which flows laterally downslope and likely discharges into crevasses, has a mean residence time of ~6.5 years. Airborne radar data suggest that the aquifer in the study area continues to expand inland, presumably from Arctic warming. These comprehensive field measurements and integrated description of aquifer hydrology provide a comprehensive, quantitative framework for modeling fluid flow through firn, and understanding existing and yet undiscovered firn aquifers, and may help researchers evaluate the role of firn aquifers in climate change impacts.

 
more » « less
NSF-PAR ID:
10375382
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
56
Issue:
8
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Surface melt produces more mass loss than any other process on the Greenland Ice Sheet. In some regions of Greenland with high summer surface melt and high winter snow accumulation, the warm porous firn of the percolation zone can retain liquid meltwater through the winter. These regions of water‐saturated firn, which may persist for longer than one year, are known as firn aquifers, commonly referred to as perennial firn aquifers. Here, we use airborne ice‐penetrating radar data from the Center for Remote Sensing of Ice Sheets (CReSIS) to document the extent of four firn aquifers in the Helheim, Ikertivaq, and Køge Bugt glacier basins with more than six repeat radar flight lines from 1993 to 2018. All four firn aquifers first appear and/or show decadal‐scale inland expansion during this time period. Through an idealized energy‐balance calculation utilizing reanalysis data from the Modèle Atmosphérique Régionale (MAR) regional climate model, we find that these aquifer expansions are driven by decreasing cold content in the firn since the late 1990s and recently increasing high‐melt years, which has reduced the firn's ability for refreezing local meltwater. High‐melt years are projected to increase on the Greenland Ice Sheet and may contribute to the continued inland expansion of firn aquifers, impacting the ice sheet's surface mass balance and hydrological controls on ice dynamics.

     
    more » « less
  2. Abstract In Southeast Greenland, summer melt and high winter snowfall rates give rise to firn aquifers: vast stores of meltwater buried beneath the ice-sheet surface. Previous detailed studies of a single Greenland firn aquifer site suggest that the water drains into crevasses, but this is not known at a regional scale. We develop and use a tool in Ghub, an online gateway of shared datasets, tools and supercomputing resources for glaciology, to identify crevasses from elevation data collected by NASA's Airborne Topographic Mapper across 29000 km 2 of Southeast Greenland. We find crevasses within 3 km of the previously mapped downglacier boundary of the firn aquifer at 20 of 25 flightline crossings. Our data suggest that crevasses widen until they reach the downglacier boundary of the firn aquifer, implying that crevasses collect firn-aquifer water, but we did not find this trend with statistical significance. The median crevasse width, 27 meters, implies an aspect ratio consistent with the crevasses reaching the bed. Our results support the idea that most water in Southeast Greenland firn aquifers drains through crevasses. Less common fates are discharge at the ice-sheet surface (3 of 25 sites) and refreezing at the aquifer bottom (1 of 25 sites). 
    more » « less
  3. Site description. This data package consists of data obtained from sampling surface soil (the 0-7.6 cm depth profile) in black mangrove (Avicennia germinans) dominated forest and black needlerush (Juncus roemerianus) saltmarsh along the Gulf of Mexico coastline in peninsular west-central Florida, USA. This location has a subtropical climate with mean daily temperatures ranging from 15.4 °C in January to 27.8 °C in August, and annual precipitation of 1336 mm. Precipitation falls as rain primarily between June and September. Tides are semi-diurnal, with 0.57 m median amplitudes during the year preceding sampling (U.S. NOAA National Ocean Service, Clearwater Beach, Florida, station 8726724). Sea-level rise is 4.0 ± 0.6 mm per year (1973-2020 trend, mean ± 95 % confidence interval, NOAA NOS Clearwater Beach station). The A. germinans mangrove zone is either adjacent to water or fringed on the seaward side by a narrow band of red mangrove (Rhizophora mangle). A near-monoculture of J. roemerianus is often adjacent to and immediately landward of the A. germinans zone. The transition from the mangrove to the J. roemerianus zone is variable in our study area. An abrupt edge between closed-canopy mangrove and J. roemerianus monoculture may extend for up to several hundred meters in some locations, while other stretches of ecotone present a gradual transition where smaller, widely spaced trees are interspersed into the herbaceous marsh. Juncus roemerianus then extends landward to a high marsh patchwork of succulent halophytes (including Salicornia bigellovi, Sesuvium sp., and Batis maritima), scattered dwarf mangrove, and salt pans, followed in turn by upland vegetation that includes Pinus sp. and Serenoa repens. Field design and sample collection. We established three study sites spaced at approximately 5 km intervals along the western coastline of the central Florida peninsula. The sites consisted of the Salt Springs (28.3298°, -82.7274°), Energy Marine Center (28.2903°, -82.7278°), and Green Key (28.2530°, -82.7496°) sites on the Gulf of Mexico coastline in Pasco County, Florida, USA. At each site, we established three plot pairs, each consisting of one saltmarsh plot and one mangrove plot. Plots were 50 m^2 in size. Plots pairs within a site were separated by 230-1070 m, and the mangrove and saltmarsh plots composing a pair were 70-170 m apart. All plot pairs consisted of directly adjacent patches of mangrove forest and J. roemerianus saltmarsh, with the mangrove forests exhibiting a closed canopy and a tree architecture (height 4-6 m, crown width 1.5-3 m). Mangrove plots were located at approximately the midpoint between the seaward edge (water-mangrove interface) and landward edge (mangrove-marsh interface) of the mangrove zone. Saltmarsh plots were located 20-25 m away from any mangrove trees and into the J. roemerianus zone (i.e., landward from the mangrove-marsh interface). Plot pairs were coarsely similar in geomorphic setting, as all were located on the Gulf of Mexico coastline, rather than within major sheltering formations like Tampa Bay, and all plot pairs fit the tide-dominated domain of the Woodroffe classification (Woodroffe, 2002, "Coasts: Form, Process and Evolution", Cambridge University Press), given their conspicuous semi-diurnal tides. There was nevertheless some geomorphic variation, as some plot pairs were directly open to the Gulf of Mexico while others sat behind keys and spits or along small tidal creeks. Our use of a plot-pair approach is intended to control for this geomorphic variation. Plot center elevations (cm above mean sea level, NAVD 88) were estimated by overlaying the plot locations determined with a global positioning system (Garmin GPS 60, Olathe, KS, USA) on a LiDAR-derived bare-earth digital elevation model (Dewberry, Inc., 2019). The digital elevation model had a vertical accuracy of ± 10 cm (95 % CI) and a horizontal accuracy of ± 116 cm (95 % CI). Soil samples were collected via coring at low tide in June 2011. From each plot, we collected a composite soil sample consisting of three discrete 5.1 cm diameter soil cores taken at equidistant points to 7.6 cm depth. Cores were taken by tapping a sleeve into the soil until its top was flush with the soil surface, sliding a hand under the core, and lifting it up. Cores were then capped and transferred on ice to our laboratory at the University of South Florida (Tampa, Florida, USA), where they were combined in plastic zipper bags, and homogenized by hand into plot-level composite samples on the day they were collected. A damp soil subsample was immediately taken from each composite sample to initiate 1 y incubations for determination of active C and N (see below). The remainder of each composite sample was then placed in a drying oven (60 °C) for 1 week with frequent mixing of the soil to prevent aggregation and liberate water. Organic wetland soils are sometimes dried at 70 °C, however high drying temperatures can volatilize non-water liquids and oxidize and decompose organic matter, so 50 °C is also a common drying temperature for organic soils (Gardner 1986, "Methods of Soil Analysis: Part 1", Soil Science Society of America); we accordingly chose 60 °C as a compromise between sufficient water removal and avoidance of non-water mass loss. Bulk density was determined as soil dry mass per core volume (adding back the dry mass equivalent of the damp subsample removed prior to drying). Dried subsamples were obtained for determination of soil organic matter (SOM), mineral texture composition, and extractable and total carbon (C) and nitrogen (N) within the following week. Sample analyses. A dried subsample was apportioned from each composite sample to determine SOM as mass loss on ignition at 550 °C for 4 h. After organic matter was removed from soil via ignition, mineral particle size composition was determined using a combination of wet sieving and density separation in 49 mM (3 %) sodium hexametaphosphate ((NaPO_3)_6) following procedures in Kettler et al. (2001, Soil Science Society of America Journal 65, 849-852). The percentage of dry soil mass composed of silt and clay particles (hereafter, fines) was calculated as the mass lost from dispersed mineral soil after sieving (0.053 mm mesh sieve). Fines could have been slightly underestimated if any clay particles were burned off during the preceding ignition of soil. An additional subsample was taken from each composite sample to determine extractable N and organic C concentrations via 0.5 M potassium sulfate (K_2SO_4) extractions. We combined soil and extractant (ratio of 1 g dry soil:5 mL extractant) in plastic bottles, reciprocally shook the slurry for 1 h at 120 rpm, and then gravity filtered it through Fisher G6 (1.6 μm pore size) glass fiber filters, followed by colorimetric detection of nitrite (NO_2^-) + nitrate (NO_3^-) and ammonium (NH_4^+) in the filtrate (Hood Nowotny et al., 2010,Soil Science Society of America Journal 74, 1018-1027) using a microplate spectrophotometer (Biotek Epoch, Winooski, VT, USA). Filtrate was also analyzed for dissolved organic C (referred to hereafter as extractable organic C) and total dissolved N via combustion and oxidation followed by detection of the evolved CO_2 and N oxide gases on a Formacs HT TOC/TN analyzer (Skalar, Breda, The Netherlands). Extractable organic N was then computed as total dissolved N in filtrate minus extractable mineral N (itself the sum of extractable NH_4-N and NO_2-N + NO_3-N). We determined soil total C and N from dried, milled subsamples subjected to elemental analysis (ECS 4010, Costech, Inc., Valencia, CA, USA) at the University of South Florida Stable Isotope Laboratory. Median concentration of inorganic C in unvegetated surface soil at our sites is 0.5 % of soil mass (Anderson, 2019, Univ. of South Florida M.S. thesis via methods in Wang et al., 2011, Environmental Monitoring and Assessment 174, 241-257). Inorganic C concentrations are likely even lower in our samples from under vegetation, where organic matter would dilute the contribution of inorganic C to soil mass. Nevertheless, the presence of a small inorganic C pool in our soils may be counted in the total C values we report. Extractable organic C is necessarily of organic C origin given the method (sparging with HCl) used in detection. Active C and N represent the fractions of organic C and N that are mineralizable by soil microorganisms under aerobic conditions in long-term soil incubations. To quantify active C and N, 60 g of field-moist soil were apportioned from each composite sample, placed in a filtration apparatus, and incubated in the dark at 25 °C and field capacity moisture for 365 d (as in Lewis et al., 2014, Ecosphere 5, art59). Moisture levels were maintained by frequently weighing incubated soil and wetting them up to target mass. Daily CO_2 flux was quantified on 29 occasions at 0.5-3 week intervals during the incubation period (with shorter intervals earlier in the incubation), and these per day flux rates were integrated over the 365 d period to compute an estimate of active C. Observations of per day flux were made by sealing samples overnight in airtight chambers fitted with septa and quantifying headspace CO_2 accumulation by injecting headspace samples (obtained through the septa via needle and syringe) into an infrared gas analyzer (PP Systems EGM 4, Amesbury, MA, USA). To estimate active N, each incubated sample was leached with a C and N free, 35 psu solution containing micronutrients (Nadelhoffer, 1990, Soil Science Society of America Journal 54, 411-415) on 19 occasions at increasing 1-6 week intervals during the 365 d incubation, and then extracted in 0.5 M K_2SO_4 at the end of the incubation in order to remove any residual mineral N. Active N was then quantified as the total mass of mineral N leached and extracted. Mineral N in leached and extracted solutions was detected as NH_4-N and NO_2-N + NO_3-N via colorimetry as above. This incubation technique precludes new C and N inputs and persistently leaches mineral N, forcing microorganisms to meet demand by mineralizing existing pools, and thereby directly assays the potential activity of soil organic C and N pools present at the time of soil sampling. Because this analysis commences with disrupting soil physical structure, it is biased toward higher estimates of active fractions. Calculations. Non-mobile C and N fractions were computed as total C and N concentrations minus the extractable and active fractions of each element. This data package reports surface-soil constituents (moisture, fines, SOM, and C and N pools and fractions) in both gravimetric units (mass constituent / mass soil) and areal units (mass constituent / soil surface area integrated through 7.6 cm soil depth, the depth of sampling). Areal concentrations were computed as X × D × 7.6, where X is the gravimetric concentration of a soil constituent, D is soil bulk density (g dry soil / cm^3), and 7.6 is the sampling depth in cm. 
    more » « less
  4. Abstract

    The relationship between firn microstructure and water movement is complex: firn microstructure controls the routing of meltwater through the firn while continuously being altered by liquid water flow processes. Importantly, microstructural transitions within the firn column can stall vertical meltwater percolation, which creates heterogeneities in liquid water content resulting in different rates of firn metamorphism. Physics‐based firn models aim to describe these processes to accurately predict ice layer or firn aquifer formation, but require detailed observations of firn structure to validate and inform percolation schemes. Here, we present grain size measurements and ice layer stratigraphy from seven firn cores collected in western Greenland's percolation zone during the 2016 Greenland Traverse for Accumulation and Climate Studies (GreenTrACS). Grain size transitions within the cores are negatively correlated with all temperature proxies for meltwater supply. Additionally, the number of grain size transitions are strongly anticorrelated with the number of ice layers within each core, despite these transitions, particularly fine‐over‐coarse transitions, promoting meltwater ponding and potential ice layer formation. To investigate if these negative correlations can be understood with firn model physics, we simulate water movement along stratigraphic transitions using the SNOWPACK model. We find that grain size transitions diminish from rapid grain growth in wet firn where ice layers can form, suggesting these microstructural transitions are unlikely to survive repeated meltwater infiltration. Incorporating these microstructure—meltwater feedbacks in firn models could improve their ability to model processes such as ice slab formation or firn aquifer recharge that require accurate predictions of meltwater infiltration depth.

     
    more » « less
  5. This manuscript aims to present the framework for the development of a four-stage tool for sustainable groundwater management as one of the highly interactive three-day workshop products. The four stages in the tool are (1) representing the target system, (2) description of the target system using components of DPSIR framework (drivers, pressures, state, impact, responses), (3) development of causal chains/loops, and (4) identifying knowledge gaps and articulating next steps. The tool is an output from the two-day Indo-US bilateral workshop on "Integrated Hydrochemical Modeling for Sustainable Development and Management of Water Supply Aquifers”. Four case studies from the invited talks, panel discussions, and breakout sessions were selected to demonstrate the developed four-stage framework to a coastal aquifer (India) and in high plains in Floridian, Piedmont, and Blueridge aquifers (United States of America). The developed tool can be practically used in the development of strategies for the sustainable use of groundwater in various regions around the world (e.g., planning/building/maintaining groundwater recharging structures). Continued work can result in establishing a center for excellence as well as developing a network project. The recommendations from the workshop were: (1) developing vulnerability analysis models for groundwater managers; (2) treatment and new ways of using low-quality groundwater; (3) adopting groundwater recharge; (4) mitigating pollutants getting into the aquifer; and (5) reducing groundwater use. This study provides a framework for future researchers to study the groundwater table related to the effectiveness of water recharging structures, developing a quantitative model from the framework. Finally, recommendations for a future study are more data collection on groundwater quality/recharge as well as enhancing outreach activities for sustainable groundwater management. 
    more » « less