We present a multiwavelength analysis of the galaxy cluster SPT-CL J0607-4448 (SPT0607), which is one of the most distant clusters discovered by the South Pole Telescope at
We present spatially resolved morphological properties of [C
- Publication Date:
- NSF-PAR ID:
- 10375405
- Journal Name:
- The Astrophysical Journal
- Volume:
- 934
- Issue:
- 1
- Page Range or eLocation-ID:
- Article No. 64
- ISSN:
- 0004-637X
- Publisher:
- DOI PREFIX: 10.3847
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract z = 1.4010 ± 0.0028. The high-redshift cluster shows clear signs of being relaxed with well-regulated feedback from the active galactic nucleus (AGN) in the brightest cluster galaxy (BCG). Using Chandra X-ray data, we construct thermodynamic profiles and determine the properties of the intracluster medium. The cool-core nature of the cluster is supported by a centrally peaked density profile and low central entropy ( keV cm2), which we estimate assuming an isothermal temperature profile due to the limited spectral information given the distance to the cluster. Using the density profile and gas cooling time inferred from the X-ray data, we find a mass-cooling rate yr−1. From optical spectroscopy and photometry around the [Oii ] emission line, we estimate that the BCG star formation rate is yr−1, roughly two orders of magnitude lower than the predicted mass-cooling rate. In addition, using ATCA radio data at 2.1 GHz, we measure a radio jet power erg s−1, which is consistent withmore » -
Abstract We present the results of a new reverberation mapping campaign for the broad-line active galactic nucleus (AGN) in the edge-on spiral IC 4329A. Monitoring of the optical continuum with
V- band photometry and broad emission-line flux variability with moderate-resolution spectroscopy allowed emission-line light curves to be measured for Hβ , Hγ , and Heii λ 4686. We find a time delay of days for Hβ , a similar time delay of days for Hγ , and an unresolved time delay of days for Heii . The time delay for Hβ is consistent with the predicted value from the relationship between AGN luminosity and broad-line region radius, after correction for the ∼2.4 mag of intrinsic extinction at 5100 Å. Combining the measured time delay for Hβ with the broad emission-line width and an adopted value of 〈f 〉 = 4.8, we find a central supermassive black hole mass ofM ⊙. Velocity-resolved time delays were measured across the broad Hβ emission-line profile and may be consistent with an “M”-like shape. Modeling of the full reverberation response of Hβ was able to provide only modest constraints on some parameters, but does exhibit agreement with the black hole mass and average time delay. The models also suggest that themore » -
Abstract We present the Ly
α emission line luminosity function (LF) of the active galactic nuclei (AGN) in the first release of the Hobby–Eberly Telescope Dark Energy Experiment Survey (HETDEX) AGN catalog. The AGN are selected either by emission line pairs characteristic of AGN or by a single broad emission line, free of any photometric preselections (magnitude/color/morphology). The sample consists of 2346 AGN spanning 1.88 <z < 3.53, covering an effective area of 30.61 deg2. Approximately 2.6% of the HETDEX AGN are not detected at >5σ confidence atr ∼ 26 in the deepestr -band images we have searched. The Lyα line luminosity ranges from ∼1042.3to 1045.9erg s−1. Our Lyα LF shows a turnover luminosity with opposite slopes on the bright end and the faint end: The space density is highest at erg s−1. We explore the evolution of the AGN LF over a broader redshift range (0.8 <z < 3); constructing the rest-frame ultraviolet (UV) LF with the 1450 Å monochromatic luminosity of the power-law component of the continuum (M1450) fromM 1450∼ −18 to −27.5. We divide the sample into three redshift bins (z ∼ 1.5, 2.1, and 2.6). In all three redshift bins, our UV LFs indicate that the space density of AGN is highest at themore » -
Abstract We present the stellar population properties of 69 short gamma-ray burst (GRB) host galaxies, representing the largest uniformly modeled sample to date. Using the
Prospector stellar population inference code, we jointly fit photometry and/or spectroscopy of each host galaxy. We find a population median redshift of (68% confidence), including nine photometric redshifts atz ≳ 1. We further find a median mass-weighted age oft m = Gyr, stellar mass of log(M */M ⊙) = , star formation rate of SFR =M ⊙yr−1, stellar metallicity of log(Z */Z ⊙) = , and dust attenuation of mag (68% confidence). Overall, the majority of short GRB hosts are star-forming (≈84%), with small fractions that are either transitioning (≈6%) or quiescent (≈10%); however, we observe a much larger fraction (≈40%) of quiescent and transitioning hosts atz ≲ 0.25, commensurate with galaxy evolution. We find that short GRB hosts populate the star-forming main sequence of normal field galaxies, but do not include as many high-mass galaxies as the general galaxy population, implying that their binary neutron star (BNS) merger progenitors are dependent on a combination of host star formation and stellar mass. The distribution of ages and redshifts implies a broad delay-time distribution,more » -
Abstract We present the analysis of ∼100 pc scale compact radio continuum sources detected in 63 local (ultra)luminous infrared galaxies (U/LIRGs;
L IR≥ 1011L ⊙), using FWHM ≲ 0.″1–0.″2 resolution 15 and 33 GHz observations with the Karl G. Jansky Very Large Array. We identify a total of 133 compact radio sources with effective radii of 8–170 pc, which are classified into four main categories—“AGN” (active galactic nuclei), “AGN/SBnuc” (AGN-starburst composite nucleus), “SBnuc” (starburst nucleus), and “SF” (star-forming clumps)—based on ancillary data sets and the literature. We find that “AGN” and “AGN/SBnuc” more frequently occur in late-stage mergers and have up to 3 dex higher 33 GHz luminosities and surface densities compared with “SBnuc” and “SF,” which may be attributed to extreme nuclear starburst and/or AGN activity in the former. Star formation rates (SFRs) and surface densities (ΣSFR) are measured for “SF” and “SBnuc” using both the total 33 GHz continuum emission (SFR ∼ 0.14–13M ⊙yr−1, ΣSFR∼ 13–1600M ⊙yr−1kpc−2) and the thermal free–free emission from Hii regions (median SFRth∼ 0.4M ⊙yr−1, yr−1kpc−2). These values are 1–2 dex higher than those measured for similar-sized clumps in nearby normal (non-U/LIRGs). The latter also have a much flatter median 15–33 GHz spectral index (∼−0.08) compared withmore »