skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, March 22 until 6:00 AM ET on Saturday, March 23 due to maintenance. We apologize for the inconvenience.


Title: ALMA Reveals Extended Cool Gas and Hot Ionized Outflows in a Typical Star-forming Galaxy at Z = 7.13
Abstract

We present spatially resolved morphological properties of [CII] 158μm, [OIII] 88μm, dust, and rest-frame ultraviolet (UV) continuum emission for A1689-zD1, a strongly lensed, sub-L* galaxy atz= 7.13, by utilizing deep Atacama Large Millimeter/submillimeter Array (ALMA) and Hubble Space Telescope (HST) observations. While the [OIII] line and UV continuum are compact, the [CII] line is extended up to a radius ofr∼ 12 kpc. Using multi-band rest-frame far-infrared continuum data ranging from 52 to 400μm, we find an average dust temperature and emissivity index ofTdust=4114+17K andβ=1.70.7+1.1, respectively, across the galaxy. We find slight differences in the dust continuum profiles at different wavelengths, which may indicate that the dust temperature decreases with distance. We map the star formation rate (SFR) via IR and UV luminosities and determine a total SFR of 37 ± 1Myr−1with an obscured fraction of 87%. While the [OIII] line is a good tracer of the SFR, the [CII] line shows deviation from the localL[CII]-SFR relations in the outskirts of the galaxy. Finally, we observe a clear difference in the line profile between [CII] and [OIII], with significant residuals (∼5σ) in the [OIII] line spectrum after subtracting a single Gaussian model. This suggests a possible origin of the extended [CII] structure from the cooling of hot ionized outflows. The extended [CII] and high-velocity [OIII] emission may both contribute in part to the highL[OIII]/L[CII]ratios recently reported inz> 6 galaxies.

 
more » « less
Award ID(s):
2006550 2005578
NSF-PAR ID:
10375405
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
934
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 64
Size(s):
["Article No. 64"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a multiwavelength analysis of the galaxy cluster SPT-CL J0607-4448 (SPT0607), which is one of the most distant clusters discovered by the South Pole Telescope atz= 1.4010 ± 0.0028. The high-redshift cluster shows clear signs of being relaxed with well-regulated feedback from the active galactic nucleus (AGN) in the brightest cluster galaxy (BCG). Using Chandra X-ray data, we construct thermodynamic profiles and determine the properties of the intracluster medium. The cool-core nature of the cluster is supported by a centrally peaked density profile and low central entropy (K0=189+11keV cm2), which we estimate assuming an isothermal temperature profile due to the limited spectral information given the distance to the cluster. Using the density profile and gas cooling time inferred from the X-ray data, we find a mass-cooling rateṀcool=10060+90Myr−1. From optical spectroscopy and photometry around the [Oii] emission line, we estimate that the BCG star formation rate isSFR[OII]=1.70.6+1.0Myr−1, roughly two orders of magnitude lower than the predicted mass-cooling rate. In addition, using ATCA radio data at 2.1 GHz, we measure a radio jet powerPcav=3.21.3+2.1×1044erg s−1, which is consistent with the X-ray cooling luminosity (Lcool=1.90.5+0.2×1044erg s−1withinrcool= 43 kpc). These findings suggest that SPT0607 is a relaxed, cool-core cluster with AGN-regulated cooling at an epoch shortly after cluster formation, implying that the balance between cooling and feedback can be reached quickly. We discuss the implications for these findings on the evolution of AGN feedback in galaxy clusters.

     
    more » « less
  2. Abstract

    We present a Keck/MOSFIRE rest-optical composite spectrum of 16 typical gravitationally lensed star-forming dwarf galaxies at 1.7 ≲z≲ 2.6 (zmean= 2.30), all chosen independent of emission-line strength. These galaxies have a median stellar mass oflog(M*/M)med=8.290.43+0.51and a median star formation rate ofSFRHαmed=2.251.26+2.15Myr1. We measure the faint electron-temperature-sensitive [Oiii]λ4363 emission line at 2.5σ(4.1σ) significance when considering a bootstrapped (statistical-only) uncertainty spectrum. This yields a direct-method oxygen abundance of12+log(O/H)direct=7.880.22+0.25(0.150.06+0.12Z). We investigate the applicability at highzof locally calibrated oxygen-based strong-line metallicity relations, finding that the local reference calibrations of Bian et al. best reproduce (≲0.12 dex) our composite metallicity at fixed strong-line ratio. At fixedM*, our composite is well represented by thez∼ 2.3 direct-method stellar mass—gas-phase metallicity relation (MZR) of Sanders et al. When comparing to predicted MZRs from the IllustrisTNG and FIRE simulations, having recalculated our stellar masses with more realistic nonparametric star formation histories(log(M*/M)med=8.920.22+0.31), we find excellent agreement with the FIRE MZR. Our composite is consistent with no metallicity evolution, at fixedM*and SFR, of the locally defined fundamental metallicity relation. We measure the doublet ratio [Oii]λ3729/[Oii]λ3726 = 1.56 ± 0.32 (1.51 ± 0.12) and a corresponding electron density ofne=10+215cm3(ne=10+74cm3) when considering the bootstrapped (statistical-only) error spectrum. This result suggests that lower-mass galaxies have lower densities than higher-mass galaxies atz∼ 2.

     
    more » « less
  3. Abstract

    We present a search for extremely red, dust-obscured,z> 7 galaxies with JWST/NIRCam+MIRI imaging over the first 20 arcmin2of publicly available Cycle 1 data from the COSMOS-Web, CEERS, and PRIMER surveys. Based on their red color in F277W−F444W (∼2.5 mag) and detection in MIRI/F770W (∼25 mag), we identify two galaxies, COS-z8M1 and CEERS-z7M1, that have best-fit photometric redshifts ofz=8.40.4+0.3and7.60.1+0.1, respectively. We perform spectral energy distribution fitting with a variety of codes (includingbagpipes,prospector,beagle, andcigale) and find a >95% probability that these indeed lie atz> 7. Both sources are compact (Reff≲ 200 pc) and highly obscured (AV∼ 1.5–2.5) and, at our best-fit redshift estimates, likely have strong [Oiii]+Hβemission contributing to their 4.4μm photometry. We estimate stellar masses of ∼1010Mfor both sources; by virtue of detection in MIRI at 7.7μm, these measurements are robust to the inclusion of bright emission lines, for example, from an active galactic nucleus. We identify a marginal (2.9σ) Atacama Large Millimeter/submillimeter Array detection at 2 mm within 0.″5 of COS-z8M1, which, if real, would suggest a remarkably high IR luminosity of ∼1012L. These two galaxies, if confirmed atz∼ 8, would be extreme in their stellar and dust masses and may be representative of a substantial population of highly dust-obscured galaxies at cosmic dawn.

     
    more » « less
  4. Abstract

    We investigate the fine-structure [Cii] line at 158μm as a molecular gas tracer by analyzing the relationship between molecular gas mass (Mmol) and [Cii] line luminosity (L[CII]) in 11,125z≃ 6 star-forming, main-sequence galaxies from thesimbasimulations, with line emission modeled by the Simulator of Galaxy Millimeter/Submillimeter Emission. Though most (∼50%–100%) of the gas mass in our simulations is ionized, the bulk (>50%) of the [Cii] emission comes from the molecular phase. We find a sublinear (slope 0.78 ± 0.01)logL[CII]logMmolrelation, in contrast with the linear relation derived from observational samples of more massive, metal-rich galaxies atz≲ 6. We derive a median [Cii]-to-Mmolconversion factor ofα[CII]≃ 18M/L. This is lower than the average value of ≃30M/Lderived from observations, which we attribute to lower gas-phase metallicities in our simulations. Thus, a lower, luminosity-dependent conversion factor must be applied when inferring molecular gas masses from [Cii] observations of low-mass galaxies. For our simulations, [Cii] is a better tracer of the molecular gas than COJ= 1–0, especially at the lowest metallicities, where much of the gas isCO-dark. We find thatL[CII]is more tightly correlated withMmolthan with star formation rate (SFR), and both thelogL[CII]logMmolandlogL[CII]logSFRrelations arise from the Kennicutt–Schmidt relation. Our findings suggest thatL[CII]is a promising tracer of the molecular gas at the earliest cosmic epochs.

     
    more » « less
  5. Abstract

    The mean free path of ionizing photons,λmfp, is a critical parameter for modeling the intergalactic medium (IGM) both during and after reionization. We present direct measurements ofλmfpfrom QSO spectra over the redshift range 5 <z< 6, including the first measurements atz≃ 5.3 and 5.6. Our sample includes data from the XQR-30 VLT large program, as well as new Keck/ESI observations of QSOs nearz∼ 5.5, for which we also acquire new [Cii] 158μm redshifts with ALMA. By measuring the Lyman continuum transmission profile in stacked QSO spectra, we findλmfp=9.331.80+2.06,5.401.40+1.47,3.311.34+2.74, and0.810.48+0.73pMpc atz= 5.08, 5.31, 5.65, and 5.93, respectively. Our results demonstrate thatλmfpincreases steadily and rapidly with time over 5 <z< 6. Notably, we find thatλmfpdeviates significantly from predictions based on a fully ionized and relaxed IGM as late asz= 5.3. By comparing our results to model predictions and indirectλmfpconstraints based on IGM Lyαopacity, we find that the evolution ofλmfpis consistent with scenarios wherein the IGM is still undergoing reionization and/or retains large fluctuations in the ionizing UV background well below redshift 6.

     
    more » « less