skip to main content


Title: Turbulent Wavefield Morphology and Ion Scattering in the Magnetosheath
Abstract

We analyze multipoint measurements in magnetosheath plasmas, just upstream of the Earth's magnetopause, to investigate the morphology of the turbulent fields and coincident 3‐D ion distributions observed. Using interferometric and generalized wave polarization analyses, we show how the fields comprise a multiscale spectrum of Alfvénic structures composed of flow shears and vortices, and current sheets and filaments advected over the spacecraft with the magnetosheath flow. It is shown how these features are correlated with intervals of enhanced ion energy, temperature anisotropy, and impulsive variations in the agyrotropy of ion velocity space distributions. It is demonstrated that the observed variation in ion properties is inconsistent with an adiabatic response but is instead correlated with the spectral energy density of nonplanar structures at ion gyroradii scales. The capacity of these field structures to scatter ions is considered.

 
more » « less
NSF-PAR ID:
10375413
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
22
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Multi‐point measurements on kinetic scales through Earth's magnetosheath have revealed a spectrum of filamentary currents and vortical flows advected with the shocked plasmas outside the magnetopause. The spectral energy density in these structures is correlated with enhanced ion temperatures. Using an empirically derived statistical model based on fluid‐kinetic theory for these structures we demonstrate how they act to scatter magnetosheath ions. Through the combined action of energization in the direction perpendicular to the background magnetic field along chaotic orbits, and pitch‐angle scattering into the parallel direction appreciable ion energization occurs. These dynamics drive heating while generating non‐thermal energetic tails similar to that observed. It is shown how the operation of this process depends on the field topology with deviations from planar form and counter‐propagation required to drive significant energization. This process will modulate ion anisotropies through the magnetosheath independent of both adiabatic effects and the action of anisotropy instabilities.

     
    more » « less
  2. Abstract

    Magnetic reconnection is a fundamental process of energy conversion in plasmas between electromagnetic fields and particles. Magnetic reconnection has been observed directly in a variety of plasmas in the solar wind and Earth's magnetosphere. Most recently, electron magnetic reconnection without ion coupling was observed for the first time in the turbulent magnetosheath and within the transition region of Earth's bow shock. In the ion foreshock upstream of Earth's bow shock, there may also be magnetic reconnection especially around foreshock transients that are very turbulent and dynamic. With observations from the National Aeronautics and Space Administration's Magnetospheric Multiscale mission inside foreshock transients, we report two events of magnetic reconnection with and without a strong guide field, respectively. In both events, a super‐ion‐Alfvénic electron jet was observed within a current sheet with thickness less than or comparable to one ion inertial length. In both events, energy was converted from the magnetic field to electrons, manifested as an increase in electron temperature. Weak or no ion coupling was observed in either event. Results from particle‐in‐cell simulations of magnetic reconnection with and without a strong guide field are qualitatively consistent with observations. Our results imply that magnetic reconnection is another electron acceleration/heating process inside foreshock transients and could play an important role in shock dynamics.

     
    more » « less
  3. Abstract

    We present a case study of the Magnetospheric Multiscale (MMS) observations of the Southern Hemispheric dayside magnetospheric boundaries under southward interplanetary magnetic field direction with strongBycomponent. During this event MMS encountered several magnetic field depressions characterized by enhanced plasma beta and high fluxes of high‐energy electrons and ions at the dusk sector of the southern cusp region that resemble previous Cluster and Polar observations of cusp diamagnetic cavities. Based on the expected maximum magnetic shear model and magnetohydrodynamic simulations, we show that for the present event the diamagnetic cavity‐like structures were formed in an unusual location. Analysis of the composition measurements of ion velocity distribution functions and magnetohydrodynamics simulations show clear evidence of the creation of a new kind of magnetic bottle structures by component reconnection occurring at lower latitudes. We propose that the high‐energy particles trapped in these cavities can sometimes end up in the loss cone and leak out, providing a likely explanation for recent high‐energy particle leakage events observed in the magnetosheath.

     
    more » « less
  4. Abstract

    Interactions between solar wind ions and neutral hydrogen atoms in Earth's exosphere can lead to the emission of soft X‐rays. Upcoming missions such as SMILE and LEXI aim to use soft X‐ray imaging to study the global structure of the magnetosphere. Although the magnetosheath and dayside magnetopause can often be driven by kinetic physics, it has typically been omitted from fluid simulations used to predict X‐ray emissions. We study the possible results of soft X‐ray imaging using hybrid simulations under quasi‐radial interplanetary magnetic fields, where ion‐ion instabilities drive ultra‐low frequency foreshock waves, leading to turbulence in the magnetosheath, affecting the dynamics of the cusp and magnetopause. We simulate soft X‐ray emission to determine what may be seen by missions such as LEXI, and evaluate the possibility of identifying kinetic structures. While kinetic structures are visible in high‐cadence imaging, current instruments may not have the time resolution to discern kinetic signals.

     
    more » « less
  5. Over three decades of in-situ observations illustrate that the Kelvin–Helmholtz (KH) instability driven by the sheared flow between the magnetosheath and magnetospheric plasma often occurs on the magnetopause of Earth and other planets under various interplanetary magnetic field (IMF) conditions. It has been well demonstrated that the KH instability plays an important role for energy, momentum, and mass transport during the solar-wind-magnetosphere coupling process. Particularly, the KH instability is an important mechanism to trigger secondary small scale (i.e., often kinetic-scale) physical processes, such as magnetic reconnection, kinetic Alfvén waves, ion-acoustic waves, and turbulence, providing the bridge for the coupling of cross scale physical processes. From the simulation perspective, to fully investigate the role of the KH instability on the cross-scale process requires a numerical modeling that can describe the physical scales from a few Earth radii to a few ion (even electron) inertial lengths in three dimensions, which is often computationally expensive. Thus, different simulation methods are required to explore physical processes on different length scales, and cross validate the physical processes which occur on the overlapping length scales. Test particle simulation provides such a bridge to connect the MHD scale to the kinetic scale. This study applies different test particle approaches and cross validates the different results against one another to investigate the behavior of different ion species (i.e., H+ and O+), which include particle distributions, mixing and heating. It shows that the ion transport rate is about 10 25  particles/s, and mixing diffusion coefficient is about 10 10  m 2  s −1 regardless of the ion species. Magnetic field lines change their topology via the magnetic reconnection process driven by the three-dimensional KH instability, connecting two flux tubes with different temperature, which eventually causes anisotropic temperature in the newly reconnected flux. 
    more » « less