For wildlife inhabiting snowy environments, snow properties such as onset date, depth, strength, and distribution can influence many aspects of ecology, including movement, community dynamics, energy expenditure, and forage accessibility. As a result, snow plays a considerable role in individual fitness and ultimately population dynamics, and its evaluation is, therefore, important for comprehensive understanding of ecosystem processes in regions experiencing snow. Such understanding, and particularly study of how wildlife–snow relationships may be changing, grows more urgent as winter processes become less predictable and often more extreme under global climate change. However, studying and monitoring wildlife–snow relationships continue to be challenging because characterizing snow, an inherently complex and constantly changing environmental feature, and identifying, accessing, and applying relevant snow information at appropriate spatial and temporal scales, often require a detailed understanding of physical snow science and technologies that typically lie outside the expertise of wildlife researchers and managers. We argue that thoroughly assessing the role of snow in wildlife ecology requires substantive collaboration between researchers with expertise in each of these two fields, leveraging the discipline‐specific knowledge brought by both wildlife and snow professionals. To facilitate this collaboration and encourage more effective exploration of wildlife–snow questions, we provide a five‐step protocol: (1) identify relevant snow property information; (2) specify spatial, temporal, and informational requirements; (3) build the necessary datasets; (4) implement quality control procedures; and (5) incorporate snow information into wildlife analyses. Additionally, we explore the types of snow information that can be used within this collaborative framework. We illustrate, in the context of two examples, field observations, remote‐sensing datasets, and four example modeling tools that simulate spatiotemporal snow property distributions and, in some cases, evolutions. For each type of snow data, we highlight the collaborative opportunities for wildlife and snow professionals when designing snow data collection efforts, processing snow remote sensing products, producing tailored snow datasets, and applying the resulting snow information in wildlife analyses. We seek to provide a clear path for wildlife professionals to address wildlife–snow questions and improve ecological inference by integrating the best available snow science through collaboration with snow professionals.
more » « less- Award ID(s):
- 1839192
- PAR ID:
- 10375462
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecosphere
- Volume:
- 13
- Issue:
- 6
- ISSN:
- 2150-8925
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Geospatial technologies and geographic methods are foundational skills in modern water resources monitoring, research, management, and policy-making. Understanding and sustaining healthy water resources depends on spatial awareness of watersheds, land use, hydrologic networks, and the communities that depend on these resources. Water professionals across disciplines are expected to have familiarity with hydrologic geospatial data. Proficiency in spatial thinking and competency reading hydrologic maps are essential skills. In addition, climate change and non-stationary ecological conditions require water specialists to utilize dynamic, time-enabled spatiotemporal datasets to examine shifting patterns and changing environments. Future water specialists will likely require even more advanced geospatial knowledge with the implementation of distributed internet-of-things sensor networks and the collection of mobility data. To support the success of future water professionals and increase hydrologic awareness in our broader communities, teachers in higher education must consider how their curriculum provides students with these vital geospatial skills. This paper considers pedagogical perspectives from educators with expertise in remote sensing, geomorphology, human geography, environmental science, ecology, and private industry. These individuals share a wealth of experience teaching geographic techniques such as GIS, remote sensing, and field methods to explore water resources. The reflections of these educators provide a snapshot of current approaches to teaching water and geospatial techniques. This commentary captures faculty experiences, ambitions, and suggestions for teaching at this moment in time.more » « less
-
Year-round observations of the physical snow and ice properties and processes that govern the ice pack evolution and its interaction with the atmosphere and the ocean were conducted during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition of the research vessel Polarstern in the Arctic Ocean from October 2019 to September 2020. This work was embedded into the interdisciplinary design of the 5 MOSAiC teams, studying the atmosphere, the sea ice, the ocean, the ecosystem, and biogeochemical processes. The overall aim of the snow and sea ice observations during MOSAiC was to characterize the physical properties of the snow and ice cover comprehensively in the central Arctic over an entire annual cycle. This objective was achieved by detailed observations of physical properties and of energy and mass balance of snow and ice. By studying snow and sea ice dynamics over nested spatial scales from centimeters to tens of kilometers, the variability across scales can be considered. On-ice observations of in situ and remote sensing properties of the different surface types over all seasons will help to improve numerical process and climate models and to establish and validate novel satellite remote sensing methods; the linkages to accompanying airborne measurements, satellite observations, and results of numerical models are discussed. We found large spatial variabilities of snow metamorphism and thermal regimes impacting sea ice growth. We conclude that the highly variable snow cover needs to be considered in more detail (in observations, remote sensing, and models) to better understand snow-related feedback processes. The ice pack revealed rapid transformations and motions along the drift in all seasons. The number of coupled ice–ocean interface processes observed in detail are expected to guide upcoming research with respect to the changing Arctic sea ice.more » « less
-
Abstract Camera traps (CTs) are a valuable tool in ecological research, amassing large quantities of information on the behaviour of diverse wildlife communities. CTs are predominantly used as passive data loggers to gather observational data for correlational analyses. Integrating CTs into experimental studies, however, can enable rigorous testing of key hypotheses in animal behaviour and conservation biology that are otherwise difficult or impossible to evaluate.
We developed the 'BoomBox', an open‐source Arduino‐compatible board that attaches to commercially available CTs to form an Automated Behavioural Response (ABR) system. The modular unit connects directly to the CT’s passive infrared (PIR) motion sensor, playing audio files over external speakers when the sensor is triggered. This creates a remote playback system that captures animal responses to specific cues, combining the benefits of camera trapping (e.g. continuous monitoring in remote locations, lack of human observers, large data volume) with the power of experimental manipulations (e.g. controlled perturbations for strong mechanistic inference).
Our system builds on previous ABR designs to provide a cheap (~100USD) and customizable field tool. We provide a practical guide detailing how to build and operate the BoomBox ABR system with suggestions for potential experimental designs that address a variety of questions in wildlife ecology. As proof‐of‐concept, we successfully field tested the BoomBox in two distinct field settings to study species interactions (predator–prey and predator–predator) and wildlife responses to conservation interventions.
This new tool allows researchers to conduct a unique suite of manipulative experiments on free‐living species in complex environments, enhancing the ability to identify mechanistic drivers of species' behaviours and interactions in natural systems.
-
Ecologists have increasingly recognized opportunities to adapt and adopt methodologies and information originally intended for other purposes in a “data fusion” approach. Recently, there has been an influx of studies and training focused on using unmanned aerial vehicles (UAV’s) and remote sensing in wildlife research. Leveraging these technologies could supplement the often resource-intensive field approaches used to monitor population and habitat dynamics for forest dwelling species such as the snowshoe hare (Lepus americanus). Barriers remain, however, especially as agencies lacking the resources to collect data using UAV’s are restricted to freely available, not wildlife-specific, products. Furthermore, technologies may not be advanced enough to “see through” the canopy to the understory, relevant for species that rely on vegetation cover. We thereby conducted a case study to determine whether an approach outlined by previous authors could be successful, wherein the remote sensing products were accessible and originally collected for broader purposes. Our models did not adequately predict snowshoe hare fecal pellet numbers, pointing to deficiencies in the scale and type of available data derived from remote sensing. We also note potential shortcomings in non-invasive field techniques. Regardless, we maintain that open-access remotely sensed imagery is valuable when ground-truthed and combined with supplemental information, adding to knowledge within and beyond the fields of forestry and wildlife biology.more » « less
-
Abstract Inexpensive and accessible sensors are accelerating data acquisition in animal ecology. These technologies hold great potential for large-scale ecological understanding, but are limited by current processing approaches which inefficiently distill data into relevant information. We argue that animal ecologists can capitalize on large datasets generated by modern sensors by combining machine learning approaches with domain knowledge. Incorporating machine learning into ecological workflows could improve inputs for ecological models and lead to integrated hybrid modeling tools. This approach will require close interdisciplinary collaboration to ensure the quality of novel approaches and train a new generation of data scientists in ecology and conservation.