skip to main content


Search for: All records

Award ID contains: 1839192

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    As camera trapping has become a standard practice in wildlife ecology, developing techniques to extract additional information from images will increase the utility of generated data. Despite rapid advancements in camera trapping practices, methods for estimating animal size or distance from the camera using captured images have not been standardized. Deriving animal sizes directly from images creates opportunities to collect wildlife metrics such as growth rates or changes in body condition. Distances to animals may be used to quantify important aspects of sampling design such as the effective area sampled or distribution of animals in the camera's field‐of‐view.

    We present a method of using pixel measurements in an image to estimate animal size or distance from the camera using a conceptual model in photogrammetry known as the ‘pinhole camera model’. We evaluated the performance of this approach both using stationary three‐dimensional animal targets and in a field setting using live captive reindeerRangifer tarandusranging in size and distance from the camera.

    We found total mean relative error of estimated animal sizes or distances from the cameras in our simulation was −3.0% and 3.3% and in our field setting was −8.6% and 10.5%, respectively. In our simulation, mean relative error of size or distance estimates were not statistically different between image settings within camera models, between camera models or between the measured dimension used in calculations.

    We provide recommendations for applying the pinhole camera model in a wildlife camera trapping context. Our approach of using the pinhole camera model to estimate animal size or distance from the camera produced robust estimates using a single image while remaining easy to implement and generalizable to different camera trap models and installations, thus enhancing its utility for a variety of camera trap applications and expanding opportunities to use camera trap images in novel ways.

     
    more » « less
  2. Abstract

    For wildlife inhabiting snowy environments, snow properties such as onset date, depth, strength, and distribution can influence many aspects of ecology, including movement, community dynamics, energy expenditure, and forage accessibility. As a result, snow plays a considerable role in individual fitness and ultimately population dynamics, and its evaluation is, therefore, important for comprehensive understanding of ecosystem processes in regions experiencing snow. Such understanding, and particularly study of how wildlife–snow relationships may be changing, grows more urgent as winter processes become less predictable and often more extreme under global climate change. However, studying and monitoring wildlife–snow relationships continue to be challenging because characterizing snow, an inherently complex and constantly changing environmental feature, and identifying, accessing, and applying relevant snow information at appropriate spatial and temporal scales, often require a detailed understanding of physical snow science and technologies that typically lie outside the expertise of wildlife researchers and managers. We argue that thoroughly assessing the role of snow in wildlife ecology requires substantive collaboration between researchers with expertise in each of these two fields, leveraging the discipline‐specific knowledge brought by both wildlife and snow professionals. To facilitate this collaboration and encourage more effective exploration of wildlife–snow questions, we provide a five‐step protocol: (1) identify relevant snow property information; (2) specify spatial, temporal, and informational requirements; (3) build the necessary datasets; (4) implement quality control procedures; and (5) incorporate snow information into wildlife analyses. Additionally, we explore the types of snow information that can be used within this collaborative framework. We illustrate, in the context of two examples, field observations, remote‐sensing datasets, and four example modeling tools that simulate spatiotemporal snow property distributions and, in some cases, evolutions. For each type of snow data, we highlight the collaborative opportunities for wildlife and snow professionals when designing snow data collection efforts, processing snow remote sensing products, producing tailored snow datasets, and applying the resulting snow information in wildlife analyses. We seek to provide a clear path for wildlife professionals to address wildlife–snow questions and improve ecological inference by integrating the best available snow science through collaboration with snow professionals.

     
    more » « less