skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sensitivity‐Enhancing Strategies in Optical Biosensing
Abstract High‐sensitivity detection of minute quantities or concentration variations of analytes of clinical importance is critical for biosensing to ensure accurate disease diagnostics and reliable health monitoring. A variety of sensitivity‐improving concepts have been proposed from chemical, physical, and biological perspectives. In this review, elements that are responsible for sensitivity enhancement are classified and discussed in accordance with their operating steps in a typical biosensing workflow that runs through sampling, analyte recognition, and signal transduction. With a focus on optical biosensing, exemplary sensitivity‐improving strategies are introduced, which can be developed into “plug‐and‐play” modules for many current and future sensors, and discuss their mechanisms to enhance biosensing performance. Three major strategies are covered: i) amplification of signal transduction by polymerization and nanocatalysts, ii) diffusion‐limit‐breaking systems for enhancing sensor–analyte contact and subsequent analyte recognition by fluid‐mixing and analyte‐concentrating, and iii) combined approaches that utilize renal concentration at the sampling and recognition steps and chemical signal amplification at the signal transduction step.  more » « less
Award ID(s):
2001650
PAR ID:
10375515
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
Volume:
17
Issue:
4
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work reports on the development of an analyte sampling strategy on a plasmonic substrate to amplify the detection capability of a dual analytical system, paper spray ionization–mass spectrometry (PSI-MS) and surface-enhanced Raman spectroscopy (SERS). While simply applying only an analyte solution to the plasmonic paper results in a limited degree of SERS enhancement, the introduction of plasmonic gold nanoparticles (AuNPs) greatly improves the SERS signals without sacrificing PSI-MS sensitivity. It is initially revealed that the concentration of AuNPs and the type of analytes highly influence the SERS signals and their variations due to the “coffee ring effect” flow mechanism induced during sampling and the degree of the interfacial interactions (e.g., van der Waals, electrostatic, covalent) between the plasmonic substrate and analyte. Subsequent PSI treatment at high voltage conditions further impacts the overall SERS responses, where the signal sensitivity and homogeneity significantly increase throughout the entire substrate, suggesting the ready migration of adsorbed analytes regardless of their interfacial attractive forces. The PSI-induced notable SERS enhancements are presumably associated with creating unique conditions for local aggregation of the AuNPs to induce effective plasmonic couplings and hot spots (i.e., electromagnetic effect) and for repositioning analytes in close proximity to a plasmonic surface to increase polarizability (i.e., chemical effect). The optimized sampling and PSI conditions are also applicable to multi-analyte analysis by SERS and MS, with greatly enhanced detection capability and signal uniformity. 
    more » « less
  2. Abstract Plants are exquisitely sensitive to the ethylene signal and also respond to a much wider range of ethylene concentrations than would seem possible based on the simple circuitry of its primary signal transduction pathway, suggesting the existence of mechanisms for amplification and adaptation to ethylene signals. Here, such regulatory systems are considered within the context of what is known about the plant ethylene signaling pathway as well as signaling by the animal G‐protein coupled receptors, and the bacterial methyl‐accepting chemotaxis proteins. Magnitude amplification and sensitivity amplification mechanisms are considered as strategies for amplification of the ethylene signal. Several families of negative feedback regulators that desensitize plants to ethylene and thereby facilitate the ethylene adaptation response of plants are described. These negative feedback regulators include the ethylene receptors themselves, the RTE1/GR family, and the ARGOS family, all of which function at the level of the ethylene receptors to desensitize plants to ethylene. These negative regulators also include the EBF family of F‐box proteins, which target the EIN3/EIL family of transcription factors for degradation. Ethylene signal amplification and adaptation employ both transcriptional and post‐transcriptional regulation. 
    more » « less
  3. Abstract Single wall carbon nanotubes (SWCNTs) functionalized with (bio-)polymers such as DNA are soluble in water and sense analytes by analyte-specific changes of their intrinsic fluorescence. Such SWCNT-based (bio-)sensors translate the binding of a molecule (molecular recognition) into a measurable optical signal. This signal transduction is crucial for all types of molecular sensors to achieve high sensitivities. Although there is an increasing number of SWCNT-based sensors, there is yet no molecular understanding of the observed changes in the SWCNT’s fluorescence. Here, we report THz experiments that map changes in the local hydration of the solvated SWCNT upon binding of analytes such as the neurotransmitter dopamine or the vitamin riboflavin. The THz amplitude signal serves as a measure of the coupling of charge fluctuations in the SWCNTs to the charge density fluctuations in the hydration layer. We find a linear (inverse) correlation between changes in THz amplitude and the intensity of the change in fluorescence induced by the analytes. Simulations show that the organic corona shapes the local water, which determines the exciton dynamics. Thus, THz signals are a quantitative predictor for signal transduction strength and can be used as a guiding chemical design principle for optimizing fluorescent biosensors. 
    more » « less
  4. Semiconductor nanocrystals (NCs) can function as efficient gain materials with chemical versatility because of their surface ligands. Because the properties of NCs in solution are sensitive to ligand–environment interactions, local chemical changes can result in changes in the optical response. However, amplification of the optical response is technically challenging because of colloidal instability at NC concentrations needed for sufficient gain to overcome losses. This paper demonstrates liquid lasing from plasmonic lattice cavities integrated with ligand-engineered CdZnS/ZnS NCs dispersed in toluene and water. By taking advantage of calcium ion-induced aggregation of NCs in aqueous solutions, we show how lasing threshold can be used as a transduction signal for ion detection. Our work highlights how NC solutions and plasmonic lattices with open cavity architectures can serve as a biosensing platform for lab-on-chip devices. 
    more » « less
  5. Abstract Organic electrochemical transistors (OECTs) have exhibited promising performance as transducers and amplifiers of low potentials due to their exceptional transconductance, enabled by the volumetric charging of organic mixed ionic/electronic conductors (OMIECs) employed as the channel material. OECT performance in aqueous electrolytes as well as the OMIECs’ redox activity has spurred a myriad of studies employing OECTs as chemical transducers. However, the OECT's large (potentiometrically derived) transconductance is not fully leveraged in common approaches that directly conduct chemical reactions amperometrically within the OECT electrolyte with direct charge transfer between the analyte and the OMIEC, which results in sub‐unity transduction of gate to drain current. Hence, amperometric OECTs do not truly display current gains in the traditional sense, falling short of the expected transistor performance. This study demonstrates an alternative device architecture that separates chemical transduction and amplification processes on two different electrochemical cells. This approach fully utilizes the OECT's large transconductance to achieve current gains of 103and current modulations of four orders of magnitude. This transduction mechanism represents a general approach enabling high‐gain chemical OECT transducers. 
    more » « less