skip to main content


Title: Evaluation of Iceberg Calving Models Against Observations From Greenland Outlet Glaciers
Abstract

Frontal ablation processes at marine‐terminating glaciers are challenging to observe and difficult to represent in numerical ice flow models, yet play critical roles in modulating ice sheet mass balance. Current ice sheet models typically rely on simple iceberg calving models to prescribe either terminus positions or iceberg calving rates, but the relative accuracies and uncertainties of these calving models remain largely unconstrained at the ice sheet scale. Here, we evaluate six published iceberg calving models against spatially and temporally diverse observations from 50 marine‐terminating outlet glaciers in Greenland. We seek the single model that best reproduces observed conditions across all glaciers, at all observation times, and with low sensitivity to calibration uncertainty. Five of six calving models can produce unbiased estimates of calving position or calving rate at the ice sheet scale. However, time series analysis reveals that, when using a single, optimized model parameter, rate‐predicting calving models frequently yield calving rate errors in excess of 10 m d−1. In comparison, terminus position‐predicting calving models more accurately track observed changes in terminus position (remaining within ~1 km of the observed grounded terminus position). Overall, our results indicate that the crevasse depth calving model provides the best balance of high accuracy and low sensitivity to imperfect parameter calibration. While the crevasse depth model appears unlikely to capture the true controls on crevasse penetration, numerically, it reproduces observed terminus dynamics with high fidelity and should be considered a leading candidate for use in models of the Greenland Ice Sheet.

 
more » « less
Award ID(s):
1716865
NSF-PAR ID:
10375583
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Volume:
125
Issue:
6
ISSN:
2169-9003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The rate of land ice loss due to iceberg calving is a key source of variability among model projections of the 21st century sea level rise. It is especially challenging to account for mass loss due to iceberg calving in Greenland, where ice drains to the ocean through hundreds of outlet glaciers, many smaller than typical model grid scale. Here, we apply a numerically efficient network flowline model (SERMeQ) forced by surface mass balance to simulate an upper bound on decadal calving retreat of 155 grounded outlet glaciers of the Greenland Ice Sheet—resolving five times as many outlets as was previously possible. We show that the upper bound holds for 91% of glaciers examined and that simulated changes in terminus position correlate with observed changes. SERMeQ can provide a physically consistent constraint on forward projections of the dynamic mass loss from the Greenland Ice Sheet associated with different climate projections.

     
    more » « less
  2. Abstract. Numerical simulations of the Greenland Ice Sheet (GrIS) over geologictimescales can greatly improve our knowledge of the critical factors drivingGrIS demise during climatically warm periods, which has clear relevance forbetter predicting GrIS behavior over the upcoming centuries. To assess thefidelity of these modeling efforts, however, observational constraints ofpast ice sheet change are needed. Across southwestern Greenland, geologicrecords detail Holocene ice retreat across both terrestrial-based and marine-terminating environments, providing an ideal opportunity to rigorouslybenchmark model simulations against geologic reconstructions of ice sheetchange. Here, we present regional ice sheet modeling results using theIce-sheet and Sea-level System Model (ISSM) of Holocene ice sheet historyacross an extensive fjord region in southwestern Greenland covering thelandscape around the Kangiata Nunaata Sermia (KNS) glacier and extendingoutward along the 200 km Nuup Kangerula (Godthåbsfjord). Oursimulations, forced by reconstructions of Holocene climate and recentlyimplemented calving laws, assess the sensitivity of ice retreat across theKNS region to atmospheric and oceanic forcing. Our simulations reveal thatthe geologically reconstructed ice retreat across the terrestrial landscapein the study area was likely driven by fluctuations in surface mass balancein response to Early Holocene warming – and was likely not influencedsignificantly by the response of adjacent outlet glaciers to calving andocean-induced melting. The impact of ice calving within fjords, however,plays a significant role by enhancing ice discharge at the terminus, leadingto interior thinning up to the ice divide that is consistent withreconstructed magnitudes of Early Holocene ice thinning. Our results,benchmarked against geologic constraints of past ice-margin change, suggestthat while calving did not strongly influence Holocene ice-margin migrationacross terrestrial portions of the KNS forefield, it strongly impactedregional mass loss. While these results imply that the implementation andresolution of ice calving in paleo-ice-flow models is important towardsmaking more robust estimations of past ice mass change, they also illustratethe importance these processes have on contemporary and future long-term icemass change across similar fjord-dominated regions of the GrIS. 
    more » « less
  3. Abstract

    The mass loss of the Greenland Ice Sheet is nearly equally partitioned between a decrease in surface mass balance from enhanced surface melt and an increase in ice dynamics from the acceleration and retreat of its marine-terminating glaciers. Much uncertainty remains in the future mass loss of the Greenland Ice Sheet due to the challenges of capturing the ice dynamic response to climate change in numerical models. Here, we estimate the sea level contribution of the Greenland Ice Sheet over the 21st century using an ice-sheet wide, high-resolution, ice-ocean numerical model that includes surface mass balance forcing, thermal forcing from the ocean, and iceberg calving dynamics. The model is calibrated with ice front observations from the past eleven years to capture the recent evolution of marine-terminating glaciers. Under a business as usual scenario, we find that northwest and central west Greenland glaciers will contribute more mass loss than other regions due to ice front retreat and ice flow acceleration. By the end of century, ice discharge from marine-terminating glaciers will contribute 50 ± 20% of the total mass loss, or twice as much as previously estimated although the contribution from the surface mass balance increases towards the end of the century.

     
    more » « less
  4. Abstract

    Almost half of the Greenland ice sheet's mass loss occurs through iceberg calving at marine terminating glaciers. The presence of buoyant subglacial discharge plumes at these marine termini are thought to increase mass loss both through submarine melting and by undercutting that consequently increases calving rates. Plume models are used to predict submarine melting and undercutting. However, there are few observations that allow these relationships to be tested. Here, we use airborne lidar from the terminus of Helheim Glacier, SE Greenland to measure the bulge induced at the surface by the upwelling plume. We use these measurements to estimate plume discharge rates using a high‐resolution, three‐dimensional plume model. Multiyear observations of the plume are compared to a record of calving from camera and icequake data. We find no evidence to suggest that the presence of a plume, determined by its visibility at the surface, increases the frequency of major calving events and also show that mass loss at the terminus driven directly by plume discharge is significantly less than mass loss from major calving events. The results suggest that the contribution of direct plume‐driven mass loss at deep marine‐terminating glaciers may be less than at shallower termini.

     
    more » « less
  5. The loss or thinning of buttressing ice shelves and accompanying changes in grounding-zone stress balance are commonly implicated as the primary trigger for grounding-line retreat, such as that observed in Amundsen Sea outlet glaciers today. Ice-shelf thinning is mostly attributed to the presence of warm ocean waters beneath the shelves. However, climate model projections show that summer air temperatures could soon exceed the threshold for widespread meltwater production on ice-shelf surfaces. This has serious implications for their future stability, because they are vulnerable to water-induced flexural stresses and water-aided crevasse penetration, termed ‘hydrofracturing’. Once initiated, the rate of shelf loss through hydrofracturing can far exceed that caused by sub-surface melting, and could result in the complete loss of some buttressing ice shelves, with marine grounding lines suddenly becoming calving ice fronts. In places where those exposed ice fronts are thick (>900m) and crevassed, deviatoric stresses can exceed the strength of the ice and the cliff face will fail mechanically, leading to rapid calving like that seen in analogous settings such as Jakobshavn on Greenland. Here we explore the implications of hydrofacturing and subsequent ice-cliff collapse in a warming climate, by parameterizing these processes in a hybrid ice sheet-shelf model. Model sensitivities to meltwater production and to ice-cliff calving rate (a function of cliff height above the stress balance threshold triggering brittle failure) are calibrated to match modern observations of calving and thinning. We find the potential for major ice-sheet retreat if global mean temperature rises more than ~2ºC above preindustrial. In the model, Antarctic calving rates at thick ice fronts are not allowed to exceed those observed in Greenland today. This may be a conservative assumption, considering the very different spatial scales of Antarctic outlets, such as Thwaites. Nonetheless, simulations following a ‘worst case’ RCP8.5 scenario produce rates of sea-level rise measured in cm per year by the end of this century. Clearly, the potential for brittle processes to deliver ice to the ocean, in addition to viscous and basal processes, needs to be better constrained through more complete, physically based representations of calving. 
    more » « less