Abstract The National Aeronautics and Space Administration (NASA) Atmospheric Waves Experiment (AWE) instrument, launched in November 2023, provides direct observation of small‐scale (30–300 km) gravity waves (GWs) in the mesosphere on a global scale. This work examined changes in GW activity observed by AWE during two major Sudden Stratospheric Warmings (SSWs) in the 2023 and 2024 winter season. Northern Hemisphere (NH) midlatitude GW activity during these events shared similarities. Variations in mesospheric GW activity showed an evident correlation with the magnitude of zonal wind in the upper stratosphere. NH midlatitude GW activity at 87 km was reduced following the onset of SSWs, likely caused by wind filtering and wave saturation. The upward propagation of GWs was suppressed when the zonal wind reversed from eastward to westward in the upper stratosphere. In regions where the zonal wind weakened but remained eastward, the weakened GWs could be due to their refraction to shorter vertical wavelengths.
more »
« less
The Influence of Obliquely Propagating Monsoon Gravity Waves in the Southern Polar Summer Mesosphere After Stratospheric Sudden Warmings in the Winter Stratosphere
Abstract Oblique propagation of gravity waves (GWs) refers to the latitudinal propagation (or vertical propagation away from their source) from the low‐latitude troposphere to the polar mesosphere. This propagation is not included in current gravity wave parameterization schemes, but may be an important component of the global dynamical structure. Previous studies have revealed a high correlation between observations of GW pseudomomentum flux (GWMF) from monsoon convection and Polar Mesospheric Clouds (PMCs) in the northern hemisphere. In this work, we report on data and model analysis of the effects of stratospheric sudden warmings (SSWs) in the northern hemisphere, on the oblique propagation of GWs from the southern hemisphere tropics, which in turn influence PMCs in the southern summer mesosphere. In response to SSWs, the propagation of GWs at the midlatitude winter hemisphere is enhanced. This enhancement appears to be slanted toward the equator with increasing altitude and follows the stratospheric eastward jet. The oblique propagation of GWs from the southern monsoon regions tends to start at higher altitudes with a sharper poleward slanted structure toward the summer mesosphere. The correlation between PMCs in the summer southern hemisphere and the zonal GWMF from 50°N to 50°S exhibits a pattern of high‐correlation coefficients that connects the winter stratosphere with the summer mesosphere, indicating the influence of Interhemispheric Coupling mechanism. Temperature and wind anomalies suggest that the dynamics in the winter hemisphere can influence the equatorial region, which in turn, can influence the oblique propagation of monsoon GWs.
more »
« less
- Award ID(s):
- 1855476
- PAR ID:
- 10375592
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 126
- Issue:
- 5
- ISSN:
- 2169-897X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Based on the hourly output from the 2000–2014 simulations of the National Center for Atmospheric Research's vertically extended version of the Whole Atmosphere Community Climate Model in specified dynamics configuration, we examine the roles of planetary waves (PWs), gravity waves, and atmospheric tides in driving the mean meridional circulation (MMC) in the lower thermosphere (LT) and its response to the sudden stratospheric warming phenomenon with an elevated stratopause in the northern hemisphere. Sandwiched between the two summer‐to‐winter overturning circulations in the mesosphere and the upper thermosphere, the climatological LT MMC is a narrow gyre that is characterized by upwelling in the middle winter latitudes, equatorward flow near 120 km, and downwelling in the middle and high summer latitudes. Following the onset of the sudden stratospheric warmings, this gyre reverses its climatological direction, resulting in a “chimney‐like” feature of un‐interrupted polar descent from the altitude of 150 km down to the upper mesosphere. This reversal is driven by the westward‐propagating PWs, which exert a brief but significant westward forcing between 70 and 125 km, exceeding gravity wave and tidal forcings in that altitude range. The attendant polar descent potentially leads to a short‐lived enhanced transport of nitric oxide into the mesosphere (with excess in the order of 1 parts per million), while carbon dioxide is decreased.more » « less
-
Polar mesospheric cloud (PMC) data obtained from the Aeronomy of Ice in the Mesosphere (AIM)/Cloud Imaging and Particle Size (CIPS) experiment and Himawari-8/Advanced Himawari Imager (AHI) observations are analyzed for multi-year climatology and interannual variations. Linkages between PMCs, mesospheric temperature, and water vapor (H2O) are further investigated with data from the Microwave Limb Sounder (MLS). Our analysis shows that PMC onset date and occurrence rate are strongly dependent on the atmospheric environment, i.e., the underlying seasonal behavior of temperature and water vapor. Upper-mesospheric dehydration by PMCs is evident in the MLS water vapor observations. The spatial patterns of the depleted water vapor correspond to the PMC occurrence region over the Arctic and Antarctic during the days after the summer solstice. The year-to-year variabilities in PMC occurrence rates and onset dates are highly correlated with mesospheric temperature and H2O. They show quasi-quadrennial oscillation (QQO) with 4–5-year periods, particularly in the southern hemisphere (SH). The combined influence of mesospheric cooling and the mesospheric H2O increase provides favorable conditions for PMC formation. The global increase in mesospheric H2O during the last decade may explain the increased PMC occurrence in the northern hemisphere (NH). Although mesospheric temperature and H2O exhibit a strong 11-year variation, little solar cycle signatures are found in the PMC occurrence during 2007–2021.more » « less
-
Abstract The seasonal and height dependencies of the orographic primary and larger‐scale secondary gravity waves (GWs) have been studied using the temperature profiles measured by Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) from 2002 to 2017. At ~40°S and during Southern Hemisphere winter, there is a strong GW peak over the Andes mountains that extend toz ~ 55 km. Using wind and topographic data, we show that orographic GWs break above the peak height of the stratospheric jet. Atz ~ 55–65 km, GW breaking and momentum deposition create body forces that generate larger‐scale secondary GWs; we show that these latter GWs form a wide peak above 65 km with a westward tilt. At middle latitudes during summer in the respective hemisphere, orographic GW breaking also generates larger‐scale secondary GWs that propagate to higher altitudes. Both orographic primary and larger‐scale secondary GWs are likely responsible for most of the non‐equatorial peaks of the persistent global distribution of GWs in SABER.more » « less
-
We analyze an episode of strong mountain wave (MW) activity over the western US from 9 to 12 January 2017 using the HIgh Altitude mechanistic General Circulation Model. We find that medium‐scale MWs were generated by strong eastward flow over the Sierra Nevada and the Rocky Mountains. During this time, part of the stratospheric polar vortex jet extended from the western US to eastern Canada such that the MWs propagated into the lower mesosphere where they dissipated from westward vertical wind shear. This resulted in secondary gravity waves (GWs) that propagated into the lower thermosphere where tertiary GWs having concentric ring structures were created. With increasing altitude in the thermosphere, certain propagation directions were highlighted as a result of the dissipation induced by the tidal winds. At 260 km, we find eastward propagation during local morning over the northeastern US, equatorward propagation around local noon over the southern US, westward propagation during local afternoon over the northwestern US, and poleward propagation over Canada after local midnight. In addition, the model shows equatorward propagating larger‐scale GWs over Canada from remote sources around local noon. The simulated regional GW‐mean flow interaction patterns are consistent with multi‐step vertical coupling triggered by the MWs. The traveling ionospheric disturbances (TIDs) during the MW event are simulated with the ionospheric model SAMI3. The simulated GWs and TIDs are consistent with the medium‐to‐large‐scale TIDs observed over the continental US in GPS TEC data.more » « less
An official website of the United States government
