skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Energetic Intracloud Lightning in the RELAMPAGO Field Campaign
Abstract A particular strength of lightning remote sensing is the variety of lightning types observed, each with a unique occurrence context and characteristically different emission. Distinct energetic intracloud (EIC) lightning discharges—compact intracloud lightning discharges (CIDs) and energetic intracloud pulses (EIPs)—produce intense RF radiation, suggesting large currents inside the cloud, and they also have different production mechanisms and occurrence contexts. A Low‐Frequency (LF) lightning remote sensing instrument array was deployed during the RELAMPAGO field campaign in west central Argentina, designed to investigate convective storms that produce high‐impact weather. LF data from the campaign can provide a valuable data set for researching the lightning context of EICs in a variety of subtropical convective storms. This paper describes the production of an LF‐CID data set in RELAMPAGO and includes a preliminary analysis of CID prevalence. Geolocated lightning events and their corresponding observed waveforms from the RELAMPAGO LF data set are used in the classification of EICs. Height estimates based on skywave reflections are computed, where prefit residual data editing is used to improve robustness against outliers. Even if EIPs occurred within the network, given the low number of very high‐peak current events and receiver saturation, automatic classification of EIPs may not be feasible using this data. The classification of CIDs, on the other hand, is straightforward and their properties, for both positive and negative polarity, are investigated. A few RELAMPAGO case studies are also presented, where high variability of CID prevalence in ordinary storms and high‐altitude positive CIDs, possibly in overshooting tops, are observed.  more » « less
Award ID(s):
1661726
PAR ID:
10375625
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth and Space Science
Volume:
8
Issue:
11
ISSN:
2333-5084
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The lightning data products generated by the low‐frequency (LF) radio lightning locating system (LLS) deployed during the Remote sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observation (RELAMPAGO) field campaign in Argentina provide a valuable data set to research the lightning evolution and characteristics of convective storms that produce high‐impact weather. LF LLS data sets offer a practical range for mesoscale studies, allowing for the observation of lightning characteristics of storms such as mesoscale convective systems or large convective lines that travel longer distances which are not necessarily staying in range of regional VHF‐based lightning detection systems throughout their lifetime. LF LLSs also provide different information than optical space‐borne lightning detectors. Lightning measurements exclusive to LF systems include discharge peak current, lightning polarity, and lightning type classification based on the lightning‐emitted radio waveform. Furthermore, these measurements can provide additional information on flash rates (e.g., positive cloud‐to‐ground flash rate) or narrow bipolar events which may often be associated with dynamically intense convection. In this article, the geolocation and data processing of the LF data set collected during RELAMPAGO is fully described and its performance characterized, with location accuracy better than 10 km. The detection efficiency (DE) of the data set is compared to that of the Geostationary Lightning Mapper, and spatiotemporal DE losses in the LF data set are discussed. Storm case studies on November 10, 2018, highlight the strengths of the data set, which include robust flash clustering and insightful flash rate and peak current measures, while illustrating how its limitations, including DE losses, can be managed. 
    more » « less
  2. Abstract We observed five clusters of upper‐level compact intracloud discharges (CIDs) moving positive charge up over land and over water in Florida. The clusters each contained 3 to 6 CIDs, and the overall cluster duration ranged from 27 to 58 s. On average, the CIDs in a given cluster occurred 11 s apart and were separated by a 3D distance of about 1.5 km. All the clustered CIDs were located above the tropopause and were likely associated with convective surges that penetrated the stratosphere. The average periodicity of CID occurrence within a cluster (every 11 s) was comparable to the periodicity at which the average cluster area is expected to be bombarded by ≥1016 eV cosmic‐ray particles (every 5 s). Each of such energetic particles gives rise to a cosmic ray shower (CRS) and, in the presence of sufficiently strong electric field over a sufficiently large distance, to a relativistic runaway electron avalanche (RREA). We infer that each of our upper‐level CIDs is likely to be caused by a CRS‐RREA traversing, at nearly the speed of light, the electrified overshooting convective surge and triggering, within a few microseconds, a multitude of streamer flashes along its path, over a distance of the order of hundreds of meters (as per the mechanism recently proposed for lightning initiation by Kostinskiy et al., 2020,https://doi.org/10.1029/2020JD033191). The upper‐level CID clustering was likely made possible by the recurring action of energetic cosmic rays and the rapid recovery of the negative screening charge layer at stratospheric altitudes. 
    more » « less
  3. Abstract Global satellite studies show a maximum in deep convection and lightning downstream of the Andes in subtropical South America. The Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign was designed to investigate the physical processes that contribute to the rapid development of deep convection and mesoscale convective systems (MCSs) in Argentina. A lightning mapping array (LMA) was deployed to Argentina as part of RELAMPAGO to collect lightning observations from extreme storms in the region. This study combines lightning data from the LMA and the Geostationary Lightning Mapper onboardGOES‐16with 1‐km gridded radar data to examine the electrical characteristics of a variety of convective storms throughout their life cycle observed during RELAMPAGO. Results from the full campaign show 48% of flashes are associated with deep convection that occurs along the eastern edge of the Sierras de Córdoba (SDC) overnight. These flashes are 65 km2smaller on average compared to stratiform flashes, which occur most frequently 50–100 km east of the SDC in the early morning hours, consistent with the upscale growth of MCSs off the terrain. Analysis of the 13–14 December MCS shows that sharp increases in flash rates correspond to deep and wide convective cores that have high graupel and hail mass, 35‐dBZ volume, and ice water path. This work validates previous satellite studies of lightning in the region, but also provides higher spatial and temporal resolution information across the convective life cycle that has not been available in previous studies. 
    more » « less
  4. null (Ed.)
    Abstract This article provides an overview of the experimental design, execution, education and public outreach, data collection, and initial scientific results from the Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign. RELAMPAGO was a major field campaign conducted in Córdoba and Mendoza provinces in Argentina, and western Rio Grande do Sul State in Brazil in 2018-2019 that involved more than 200 scientists and students from the US, Argentina, and Brazil. This campaign was motivated by the physical processes and societal impacts of deep convection that frequently initiates in this region, often along the complex terrain of the Sierras de Córdoba and Andes, and often grows rapidly upscale into dangerous storms that impact society. Observed storms during the experiment produced copious hail, intense flash flooding, extreme lightning flash rates and other unusual lightning phenomena, but few tornadoes. The 5 distinct scientific foci of RELAMPAGO: convection initiation, severe weather, upscale growth, hydrometeorology, and lightning and electrification are described, as are the deployment strategies to observe physical processes relevant to these foci. The campaign’s international cooperation, forecasting efforts, and mission planning strategies enabled a successful data collection effort. In addition, the legacy of RELAMPAGO in South America, including extensive multi-national education, public outreach, and social media data-gathering associated with the campaign, is summarized. 
    more » « less
  5. Abstract This review covers selected results of recent observations of lightning discharges performed across the entire electromagnetic spectrum (radiofrequency, optical, and energetic radiation) at the Lightning Observatory in Gainesville, Florida. The most important results include (a) characterization of the preliminary-breakdown, stepped-leader, and return-stroke processes in high-intensity (⩾50 kA) negative lightning discharges, (b) the first high-speed video images of bidirectional leader that made contact with the ground and produced a return stroke, (c) discovery of negative stepped leader branches colliding with the lateral surface of neighboring branches of the same leader, (d) new data on the occurrence context and properties of compact intracloud discharges, and (e) observation of a terrestrial gamma-ray flash that occurred during a bipolar cloud-to-ground lightning discharge. The results serve to improve our understanding of the physics of lightning with important implications for lightning modeling, lightning protection, and high-energy atmospheric physics studies. 
    more » « less