skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: From the Arctic to the tropics: multibiome prediction of leaf mass per area using leaf reflectance
Summary Leaf mass per area (LMA) is a key plant trait, reflecting tradeoffs between leaf photosynthetic function, longevity, and structural investment. Capturing spatial and temporal variability in LMA has been a long‐standing goal of ecological research and is an essential component for advancing Earth system models. Despite the substantial variation in LMA within and across Earth's biomes, an efficient, globally generalizable approach to predict LMA is still lacking.We explored the capacity to predict LMA from leaf spectra across much of the global LMA trait space, with values ranging from 17 to 393 g m−2. Our dataset contained leaves from a wide range of biomes from the high Arctic to the tropics, included broad‐ and needleleaf species, and upper‐ and lower‐canopy (i.e. sun and shade) growth environments.Here we demonstrate the capacity to rapidly estimate LMA using only spectral measurements across a wide range of species, leaf age and canopy position from diverse biomes. Our model captures LMA variability with high accuracy and low error (R2 = 0.89; root mean square error (RMSE) = 15.45 g m−2).Our finding highlights the fact that the leaf economics spectrum is mirrored by the leaf optical spectrum, paving the way for this technology to predict the diversity of LMA in ecosystems across global biomes.  more » « less
Award ID(s):
1638720
PAR ID:
10375691
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
224
Issue:
4
ISSN:
0028-646X
Page Range / eLocation ID:
p. 1557-1568
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Leaf dark respiration (Rdark), an important yet rarely quantified component of carbon cycling in forest ecosystems, is often simulated from leaf traits such as the maximum carboxylation capacity (Vcmax), leaf mass per area (LMA), nitrogen (N) and phosphorus (P) concentrations, in terrestrial biosphere models. However, the validity of these relationships across forest types remains to be thoroughly assessed.Here, we analyzedRdarkvariability and its associations withVcmaxand other leaf traits across three temperate, subtropical and tropical forests in China, evaluating the effectiveness of leaf spectroscopy as a superior monitoring alternative.We found that leaf magnesium and calcium concentrations were more significant in explaining cross‐siteRdarkthan commonly used traits like LMA, N and P concentrations, but univariate trait–Rdarkrelationships were always weak (r2 ≤ 0.15) and forest‐specific. Although multivariate relationships of leaf traits improved the model performance, leaf spectroscopy outperformed trait–Rdarkrelationships, accurately predicted cross‐siteRdark(r2 = 0.65) and pinpointed the factors contributing toRdarkvariability.Our findings reveal a few novel traits with greater cross‐site scalability regardingRdark, challenging the use of empirical trait–Rdarkrelationships in process models and emphasize the potential of leaf spectroscopy as a promising alternative for estimatingRdark, which could ultimately improve process modeling of terrestrial plant respiration. 
    more » « less
  2. Summary Seasonal dynamics in the vertical distribution of leaf area index (LAI) may impact the seasonality of forest productivity in Amazonian forests. However, until recently, fine‐scale observations critical to revealing ecological mechanisms underlying these changes have been lacking.To investigate fine‐scale variation in leaf area with seasonality and drought we conducted monthly ground‐based LiDAR surveys over 4 yr at an Amazon forest site. We analysed temporal changes in vertically structuredLAIalong axes of both canopy height and light environments.Upper canopyLAIincreased during the dry season, whereas lower canopyLAIdecreased. The low canopy decrease was driven by highly illuminated leaves of smaller trees in gaps. By contrast, understoryLAIincreased concurrently with the upper canopy. Hence, tree phenological strategies were stratified by height and light environments. Trends were amplified during a 2015–2016 severe El Niño drought.Leaf area low in the canopy exhibited behaviour consistent with water limitation. Leaf loss from short trees in high light during drought may be associated with strategies to tolerate limited access to deep soil water and stressful leaf environments. Vertically and environmentally structured phenological processes suggest a critical role of canopy structural heterogeneity in seasonal changes in Amazon ecosystem function. 
    more » « less
  3. Summary Nonstructural carbohydrate (NSC) concentrations might reflect the strategies described in the leaf economic spectrum (LES) due to their dependence on photosynthesis and respiration.We examined if NSC concentrations correlate with leaf structure, chemistry, and physiology traits for 114 species from 19 sites and 5 biomes around the globe.Total leaf NSC concentrations varied greatly from 16 to 199 mg g−1dry mass and were mostly independent of leaf gas exchange and the LES traits. By contrast, leaf NSC residence time was shorter in species with higher rates of photosynthesis, following the fast‐slow strategies in the LES. An average leaf held an amount of NSCs that could sustain one night of leaf respiration and could be replenished in just a few hours of photosynthesis under saturating light, indicating that most daily carbon gain is exported.Our results suggest that NSC export is clearly linked to the economics of return on resource investment. 
    more » « less
  4. Summary Large intraspecific functional trait variation strongly impacts many aspects of communities and ecosystems, and is the medium upon which evolution works. Yet intraspecific trait variation is inconsistent and hard to predict across traits, species and locations.We measured within‐species variation in leaf mass per area (LMA), leaf dry matter content (LDMC), branch wood density (WD), and allocation to stem area vs leaf area in branches (branch Huber value (HV)) across the aridity range of seven Australian eucalypts and a co‐occurringAcaciaspecies to explore how traits and their variances change with aridity.Within species, we found consistent increases in LMA, LDMC and WD and HV with increasing aridity, resulting in consistent trait coordination across leaves and branches. However, this coordination only emerged across sites with large climate differences. Unlike trait means, patterns of trait variance with aridity were mixed across populations and species. Only LDMC showed constrained trait variation in more xeric species and drier populations that could indicate limits to plasticity or heritable trait variation.Our results highlight that climate can drive consistent within‐species trait patterns, but that patterns might often be obscured by the complex nature of morphological traits, sampling incomplete species ranges or sampling confounded stress gradients. 
    more » « less
  5. Measuring the chemical traits of leaf litter is important for understanding plants’ influence on nutrient cycles, including through nutrient resorption and litter decomposition, but conventional leaf trait measurements are often destructive and labor-intensive. Here, we develop and evaluate the performance of partial least-squares regression models that use reflectance spectra of intact or ground leaves to estimate leaf litter traits, including carbon and nitrogen concentration, carbon fractions, and leaf mass per area (LMA). Our analyses included more than 300 samples of senesced foliage from 11 species of temperate trees, including both needleleaf and broadleaf species. Across all samples, we could predict each trait with moderate-to-high accuracy from both intact-leaf litter spectra (validation R2 = 0.543–0.941; %root mean squared error (RMSE) = 7.49–18.5) and ground-leaf litter spectra (validation R2 = 0.491–0.946; %RMSE = 7.00–19.5). Notably, intact-leaf spectra yielded better predictions of LMA. Our results support the feasibility of building models to estimate multiple chemical traits from leaf litter of a range of species. In particular, intact-leaf spectral models allow non-destructive trait estimation in a matter of seconds, which could enable researchers to measure the same leaves over time in studies of nutrient resorption. 
    more » « less