Abstract Phytoplankton stoichiometry modulates the interaction between carbon, nitrogen and phosphorus cycles. Environmentally driven variations in phytoplankton C:N:P can alter biogeochemical cycling compared to expectations under fixed ratios. In fact, the assumption of fixed C:N:P has been linked to Earth System Model (ESM) biases and potential misrepresentation of responses to future change. Here we integrate key elements of the Adaptive Trait Optimization Model (ATOM) for phytoplankton stoichiometry with the Carbon, Ocean Biogeochemistry and Lower Trophics (COBALT) ocean biogeochemical model. Within a series of global ocean‐ice‐ecosystem retrospective simulations, ATOM‐COBALT reproduced observations of phytoplankton N:P, and compared to static ratios, exhibited reduced phytoplankton P‐limitation, enhanced N‐fixation, and increased low‐latitude export, improving consistency with observations and highlighting the biogeochemical implications of dynamic N:P. We applied ATOM‐COBALT to explore the impacts of different physiological mechanisms hypothesized to underlie N:P variation, finding that two mechanisms together drove the observed patterns: proportionality of P‐rich ribosomes in phytoplankton cells to growth rates and reductions in P‐storage during scarcity. A third mechanism which linked temperature with phytoplankton biomass allocations to non‐ribosomal proteins, led only to relatively modest impacts because this mechanism decreased the temperature dependence of phytoplankton growth rates, compensating for changes in N:P. We find that there are quantitative response differences that associate distinctive biogeochemical footprints with each mechanism, which are most apparent in highly productive low‐latitude regions. These results suggest that variable phytoplankton N:P makes phytoplankton productivity and export resilient to environmental changes, and support further research on the physiological and environmental drivers of phytoplankton stoichiometry and biogeochemical role. 
                        more » 
                        « less   
                    
                            
                            Marine phytoplankton resilience may moderate oligotrophic ecosystem responses and biogeochemical feedbacks to climate change
                        
                    
    
            Abstract Are the oceans turning into deserts? Rising temperature, increasing surface stratification, and decreasing vertical inputs of nutrients are expected to cause an expansion of warm, nutrient deplete ecosystems. Such an expansion is predicted to negatively affect a trio of key ocean biogeochemical features: phytoplankton biomass, primary productivity, and carbon export. However, phytoplankton communities are complex adaptive systems with immense diversity that could render them at least partially resilient to global changes. This can be illustrated by the biology of theProchlorococcus“collective.” Adaptations to counter stress, use of alternative nutrient sources, and frugal resource allocation can allowProchlorococcusto buffer climate‐driven changes in nutrient availability. In contrast, cell physiology is more sensitive to temperature changes. Here, we argue that biogeochemical models need to consider the adaptive potential of diverse phytoplankton communities. However, a full understanding of phytoplankton resilience to future ocean changes is hampered by a lack of global biogeographic observations to test theories. We propose that the resilience may in fact be greater in oligotrophic waters than currently considered with implications for future predictions of phytoplankton biomass, primary productivity, and carbon export. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10375696
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography
- Volume:
- 67
- Issue:
- S1
- ISSN:
- 0024-3590
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The elemental ratios of carbon, nitrogen, and phosphorus (C:N:P) within organic matter play a key role in coupling biogeochemical cycles in the global ocean. At the cellular level, these ratios are controlled by physiological responses to the environment. But linking these cellular‐level processes to global biogeochemical cycles remains challenging. We present a novel model framework that combines knowledge of phytoplankton cellular functioning with global scale hydrographic data, to assess the role of variable carbon‐to‐phosphorus ratios (RC:P) on the distribution of export production. We implement a trait‐based mechanistic model of phytoplankton growth into a global biogeochemical inverse model to predict global patterns of phytoplankton physiology and stoichiometry that are consistent with both biological growth mechanisms and hydrographic carbon and nutrient observations. We compare this model to empirical parameterizations relatingRC:Pto temperature or phosphate concentration. We find that the way the model represents variable stoichiometry affects the magnitude and spatial pattern of carbon export, with globally integrated fluxes varying by up to 10% (1.3 Pg C yr−1) across models. Despite these differences, all models exhibit strong consistency with observed dissolved inorganic carbon and phosphate concentrations (R2 > 0.9), underscoring the challenge of selecting the most accurate model structure. We also find that the choice of parameterization impacts the capacity of changingRC:Pto buffer predicted export declines. Our novel framework offers a pathway by which additional biological information might be used to reduce the structural uncertainty in model representations of phytoplankton stoichiometry, potentially improving our capacity to project future changes.more » « less
- 
            Abstract Dissolved iron (dFe) plays an important role in regulating marine productivity. In high nutrient, low chlorophyll regions (>33% of the global ocean), iron is the primary growth limiting nutrient, and elsewhere iron can regulate nitrogen fixation by diazotrophs. The link between iron availability and carbon export is strongly dependent on the phytoplankton iron quotas or cellular Fe:C ratios. This ratio varies by more than an order of magnitude in the open ocean and is positively correlated with ambient dFe concentrations in field observations. Representing Fe:C ratios within models is necessary to investigate how ocean carbon cycling will interact with perturbations to iron cycling in a changing climate. The Community Earth System Model ocean component was modified to simulate dynamic, group‐specific, phytoplankton Fe:C that varies as a function of ambient iron concentration. The simulated Fe:C ratios improve the representation of the spatial trends in the observed Fe:C ratios. The acclimation of phytoplankton Fe:C ratios dampens the biogeochemical response to varying atmospheric deposition of soluble iron, compared to a fixed Fe:C ratio. However, varying atmospheric soluble iron supply has first order impacts on global carbon and nitrogen fluxes and on nutrient limitation spatial patterns. Our results suggest that pyrogenic Fe is a significant dFe source that rivals mineral dust inputs in some regions. Changes in dust flux and iron combustion sources (anthropogenic and wildfires) will modify atmospheric Fe inputs in the future. Accounting for dynamic phytoplankton iron quotas is critical for understanding ocean biogeochemistry and projecting its response to variations in atmospheric deposition.more » « less
- 
            Climate warming increasingly drives changes in large-scale ocean physics and biogeochemistry, and affects the kinetics of biological reactions. Together these factors govern phytoplankton productivity, thereby shaping the responses of ocean carbon and nutrient cycles to global change. Here we bring together results from experimental, observational and modelling studies to highlight how interactive feedbacks between warming and nutrient limitation can affect the responses of biogeochemically critical marine primary producers. The availability of many bioactive elements in seawater will be altered markedly in the future, thereby shifting resource deficiencies. These modifications to nutrient limitation when compounded by concurrent warming can change phytoplankton optimum growth temperatures and elemental use efficiencies in group-specific and nutrient-specific ways. The biogeochemical impacts of these nutrient and warming interactions reflect a distinction between the thermal reactivity of major cellular structural elements like nitrogen (N) and catalytic micronutrients like iron (Fe). Integrating the mechanistic feedbacks between warming, nutrient availability and primary productivity into Earth system models is necessary to improve confidence in projections of ocean biogeochemical cycle transformations in a changing climate.more » « less
- 
            Abstract Seasonal and El Niño-Southern Oscillation (ENSO) warming result in similar ocean changes as predicted with climate change. Climate-driven environmental cycles have strong impacts on microbiome diversity, but impacts on microbiome function are poorly understood. Here we quantify changes in microbial genomic diversity and functioning over 11 years covering seasonal and ENSO cycles at a coastal site in the southern California Current. We observe seasonal oscillations between large-genome lineages during cold, nutrient rich conditions in winter and spring versus small-genome lineages, includingProchlorococcusandPelagibacter, in summer and fall. Parallel interannual changes separate communities depending on ENSO condition. Biodiversity shifts translate into clear oscillations in microbiome functional potential. Ocean warming induced an ecosystem with less iron but more macronutrient stress genes, depressed organic carbon degradation potential and biomass, and elevated carbon-to-nutrient biomass ratios. The consistent microbial response observed across time-scales points towards large climate-driven changes in marine ecosystems and biogeochemical cycles.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
