skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Linking the Different Diameter Types of Aspherical Desert Dust Indicates That Models Underestimate Coarse Dust Emission
Abstract Measurements of dust aerosol size usually obtain the optical or projected area‐equivalent diameters, whereas model calculations of dust impacts use the geometric or aerodynamic diameters. Accurate conversions between the four diameter types are thus critical. However, most current conversions assume dust is spherical, even though numerous studies show that dust is highly aspherical. Here, we obtain conversions between different diameter types that account for dust asphericity. Our conversions indicate that optical particle counters have underestimated dust geometric diameter (Dgeo) at coarse sizes. We further use the diameter conversions to obtain a consistent observational constraint on the size distribution of emitted dust. This observational constraint is coarser than parameterizations used in global aerosol models, which underestimate the mass of emitted dust within 10 ≤ Dgeo ≤ 20 μm by a factor of ∼2 and usually do not account for the substantial dust emissions withDgeo ≥ 20 μm. Our findings suggest that models substantially underestimate coarse dust emission.  more » « less
Award ID(s):
1856389
PAR ID:
10375700
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
6
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. Even though desert dust is the most abundant aerosol bymass in Earth's atmosphere, atmospheric models struggle to accuratelyrepresent its spatial and temporal distribution. These model errors arepartially caused by fundamental difficulties in simulating dust emission incoarse-resolution models and in accurately representing dust microphysicalproperties. Here we mitigate these problems by developing a new methodologythat yields an improved representation of the global dust cycle. We presentan analytical framework that uses inverse modeling to integrate an ensembleof global model simulations with observational constraints on the dust sizedistribution, extinction efficiency, and regional dust aerosol opticaldepth. We then compare the inverse model results against independentmeasurements of dust surface concentration and deposition flux and find thaterrors are reduced by approximately a factor of 2 relative to currentmodel simulations of the Northern Hemisphere dust cycle. The inverse modelresults show smaller improvements in the less dusty Southern Hemisphere,most likely because both the model simulations and the observationalconstraints used in the inverse model are less accurate. On a global basis,we find that the emission flux of dust with a geometric diameter up to 20 µm (PM20) is approximately 5000 Tg yr−1, which is greater than mostmodels account for. This larger PM20 dust flux is needed to matchobservational constraints showing a large atmospheric loading of coarsedust. We obtain gridded datasets of dust emission, vertically integratedloading, dust aerosol optical depth, (surface) concentration, and wet anddry deposition fluxes that are resolved by season and particle size. As ourresults indicate that this dataset is more accurate than current modelsimulations and the MERRA-2 dust reanalysis product, it can be used toimprove quantifications of dust impacts on the Earth system. 
    more » « less
  2. Coarse mineral dust (diameter, ≥5 μm) is an important component of the Earth system that affects clouds, ocean ecosystems, and climate. Despite their significance, climate models consistently underestimate the amount of coarse dust in the atmosphere when compared to measurements. Here, we estimate the global load of coarse dust using a framework that leverages dozens of measurements of atmospheric dust size distributions. We find that the atmosphere contains 17 Tg of coarse dust, which is four times more than current climate models simulate. Our findings indicate that models deposit coarse dust out of the atmosphere too quickly. Accounting for this missing coarse dust adds a warming effect of 0.15 W·m −2 and increases the likelihood that dust net warms the climate system. We conclude that to properly represent the impact of dust on the Earth system, climate models must include an accurate treatment of coarse dust in the atmosphere. 
    more » « less
  3. null (Ed.)
    Abstract. Even though desert dust is the most abundant aerosol bymass in Earth's atmosphere, the relative contributions of the world's majorsource regions to the global dust cycle remain poorly constrained. Thisproblem hinders accounting for the potentially large impact of regionaldifferences in dust properties on clouds, the Earth's energy balance, andterrestrial and marine biogeochemical cycles. Here, we constrain thecontribution of each of the world's main dust source regions to the globaldust cycle. We use an analytical framework that integrates an ensemble ofglobal aerosol model simulations with observationally informed constraintson the dust size distribution, extinction efficiency, and regional dustaerosol optical depth (DAOD). We obtain a dataset that constrains therelative contribution of nine major source regions to size-resolveddust emission, atmospheric loading, DAOD, concentration, and depositionflux. We find that the 22–29 Tg (1 standard error range) global loading ofdust with a geometric diameter up to 20 µm is partitioned as follows:North African source regions contribute ∼ 50 % (11–15 Tg),Asian source regions contribute ∼ 40 % (8–13 Tg), and NorthAmerican and Southern Hemisphere regions contribute ∼ 10 %(1.8–3.2 Tg). These results suggest that current models on averageoverestimate the contribution of North African sources to atmospheric dustloading at ∼ 65 %, while underestimating the contribution ofAsian dust at ∼ 30 %. Our results further show that eachsource region's dust loading peaks in local spring and summer, which ispartially driven by increased dust lifetime in those seasons. We alsoquantify the dust deposition flux to the Amazon rainforest to be∼ 10 Tg yr−1, which is a factor of 2–3 less than inferred fromsatellite data by previous work that likely overestimated dust deposition byunderestimating the dust mass extinction efficiency. The data obtained inthis paper can be used to obtain improved constraints on dust impacts onclouds, climate, biogeochemical cycles, and other parts of the Earth system. 
    more » « less
  4. Abstract. Mineral dust is the most abundant aerosol species by massin the atmosphere, and it impacts global climate, biogeochemistry, and humanhealth. Understanding these varied impacts on the Earth system requiresaccurate knowledge of dust abundance, size, and optical properties, and howthey vary in space and time. However, current global models show substantialbiases against measurements of these dust properties. For instance, recentstudies suggest that atmospheric dust is substantially coarser and moreaspherical than accounted for in models, leading to persistent biases inmodelled impacts of dust on the Earth system. Here, we facilitate moreaccurate constraints on dust impacts by developing a new dataset: DustConstraints from joint Observational-Modelling-experiMental analysis(DustCOMM). This dataset combines an ensemble of global model simulationswith observational and experimental constraints on dust size distributionand shape to obtain more accurate constraints on three-dimensional (3-D)atmospheric dust properties than is possible from global model simulationsalone. Specifically, we present annual and seasonal climatologies of the 3-Ddust size distribution, 3-D dust mass extinction efficiency at 550 nm, andtwo-dimensional (2-D) atmospheric dust loading. Comparisons with independentmeasurements taken over several locations, heights, and seasons show thatDustCOMM estimates consistently outperform conventional global modelsimulations. In particular, DustCOMM achieves a substantial reduction in thebias relative to measured dust size distributions in the 0.5–20 µmdiameter range. Furthermore, DustCOMM reproduces measurements of dust massextinction efficiency to almost within the experimental uncertainties,whereas global models generally overestimate the mass extinction efficiency.DustCOMM thus provides more accurate constraints on 3-D dust properties, andas such can be used to improve global models or serve as an alternative toglobal model simulations in constraining dust impacts on the Earth system. 
    more » « less
  5. Data from both laboratory studies and atmospheric measurements are used to develop an empirical parameterization for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RHw) are taken as a measure of the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. The parameterization developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A calibration factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RHw of 105% vs. maximum fractions active at higher RHw. Instrumental factors that affect activation behavior vs. RHw in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this calibration factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization, including calibration correction, to predictions of the immersion freezing surface active site density parameterization for mineral dust particles, developed separately from AIDA experimental data alone, shows excellent agreement for data collected in a descent through a Saharan aerosol layer. These studies support the utility of laboratory measurements to obtain atmospherically relevant data on the ice nucleation properties of dust and other particle types, and suggest the suitability of considering all mineral dust as a single type of ice nucleating particle as a useful first-order approximation in numerical modeling investigations. 
    more » « less