skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improved representation of the global dust cycle using observational constraints on dust properties and abundance
Abstract. Even though desert dust is the most abundant aerosol bymass in Earth's atmosphere, atmospheric models struggle to accuratelyrepresent its spatial and temporal distribution. These model errors arepartially caused by fundamental difficulties in simulating dust emission incoarse-resolution models and in accurately representing dust microphysicalproperties. Here we mitigate these problems by developing a new methodologythat yields an improved representation of the global dust cycle. We presentan analytical framework that uses inverse modeling to integrate an ensembleof global model simulations with observational constraints on the dust sizedistribution, extinction efficiency, and regional dust aerosol opticaldepth. We then compare the inverse model results against independentmeasurements of dust surface concentration and deposition flux and find thaterrors are reduced by approximately a factor of 2 relative to currentmodel simulations of the Northern Hemisphere dust cycle. The inverse modelresults show smaller improvements in the less dusty Southern Hemisphere,most likely because both the model simulations and the observationalconstraints used in the inverse model are less accurate. On a global basis,we find that the emission flux of dust with a geometric diameter up to 20 µm (PM20) is approximately 5000 Tg yr−1, which is greater than mostmodels account for. This larger PM20 dust flux is needed to matchobservational constraints showing a large atmospheric loading of coarsedust. We obtain gridded datasets of dust emission, vertically integratedloading, dust aerosol optical depth, (surface) concentration, and wet anddry deposition fluxes that are resolved by season and particle size. As ourresults indicate that this dataset is more accurate than current modelsimulations and the MERRA-2 dust reanalysis product, it can be used toimprove quantifications of dust impacts on the Earth system.  more » « less
Award ID(s):
1856389
PAR ID:
10231755
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
21
Issue:
10
ISSN:
1680-7324
Page Range / eLocation ID:
8127 to 8167
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. Even though desert dust is the most abundant aerosol bymass in Earth's atmosphere, the relative contributions of the world's majorsource regions to the global dust cycle remain poorly constrained. Thisproblem hinders accounting for the potentially large impact of regionaldifferences in dust properties on clouds, the Earth's energy balance, andterrestrial and marine biogeochemical cycles. Here, we constrain thecontribution of each of the world's main dust source regions to the globaldust cycle. We use an analytical framework that integrates an ensemble ofglobal aerosol model simulations with observationally informed constraintson the dust size distribution, extinction efficiency, and regional dustaerosol optical depth (DAOD). We obtain a dataset that constrains therelative contribution of nine major source regions to size-resolveddust emission, atmospheric loading, DAOD, concentration, and depositionflux. We find that the 22–29 Tg (1 standard error range) global loading ofdust with a geometric diameter up to 20 µm is partitioned as follows:North African source regions contribute ∼ 50 % (11–15 Tg),Asian source regions contribute ∼ 40 % (8–13 Tg), and NorthAmerican and Southern Hemisphere regions contribute ∼ 10 %(1.8–3.2 Tg). These results suggest that current models on averageoverestimate the contribution of North African sources to atmospheric dustloading at ∼ 65 %, while underestimating the contribution ofAsian dust at ∼ 30 %. Our results further show that eachsource region's dust loading peaks in local spring and summer, which ispartially driven by increased dust lifetime in those seasons. We alsoquantify the dust deposition flux to the Amazon rainforest to be∼ 10 Tg yr−1, which is a factor of 2–3 less than inferred fromsatellite data by previous work that likely overestimated dust deposition byunderestimating the dust mass extinction efficiency. The data obtained inthis paper can be used to obtain improved constraints on dust impacts onclouds, climate, biogeochemical cycles, and other parts of the Earth system. 
    more » « less
  2. Abstract. Sedimentary records indicate that atmospheric dust has increased substantially since preindustrial times. However, state-of-the-art global Earth system models (ESMs) are unable to capture this historical increase, posing challenges in assessing the impacts of desert dust on Earth's climate. To address this issue, we construct a globally gridded dust emission dataset (DustCOMMv1) spanning 1841–2000. We do so by combining 19 sedimentary records of dust deposition with observational and modeling constraints on the modern-day dust cycle. The derived emission dataset contains interdecadal variability of dust emissions as forced by the deposition flux records, which increased by approximately 50 % from 1851–1870 to 1981–2000. We further provide future dust emission datasets for 2000–2100 by assuming three possible scenarios for how future dust emissions will evolve. We evaluate the historical dust emission dataset and illustrate its effectiveness in enforcing a historical dust increase in ESMs by conducting a long-term (1851–2000) dust cycle simulation with the Community Earth System Model (CESM2). The simulated dust depositions are in reasonable agreement with the long-term increase in most sedimentary dust deposition records and with measured long-term trends in dust concentration at sites in Miami and Barbados. This contrasts with the CESM2 simulations using a process-based dust emission scheme and with simulations from the Coupled Model Intercomparison Project (CMIP6), which show little to no secular trends in dust deposition, concentration, and optical depth. The DustCOMM emissions thus enable ESMs to account for the historical radiative forcings (RFs), including due to dust direct interactions with radiation (direct RF). Our CESM2 simulations estimate a 1981–2000 minus 1851–1870 direct RF of −0.10 W m−2 by dust aerosols up to 10 µm in diameter (PM10) at the top of atmosphere (TOA). This global dust emission dataset thus enables models to more accurately account for historical aerosol forcings, thereby improving climate change projections such as those in the Intergovernmental Panel on Climate Change (IPCC) assessment reports. 
    more » « less
  3. Abstract. Desert dust is an important atmospheric aerosol that affects the Earth's climate, biogeochemistry, and air quality. However, current Earth system models (ESMs) struggle to accurately capture the impact of dust on the Earth's climate and ecosystems, in part because these models lack several essential aeolian processes that couple dust with climate and land surface processes. In this study, we address this issue by implementing several new parameterizations of aeolian processes detailed in our companion paper in the Community Earth System Model version 2 (CESM2). These processes include (1) incorporating a simplified soil particle size representation to calculate the dust emission threshold friction velocity, (2) accounting for the drag partition effect of rocks and vegetation in reducing wind stress on erodible soils, (3) accounting for the intermittency of dust emissions due to unresolved turbulent wind fluctuations, and (4) correcting the spatial variability of simulated dust emissions from native to higher spatial resolutions on spatiotemporal dust variability. Our results show that the modified dust emission scheme significantly reduces the model bias against observations compared with the default scheme and improves the correlation against observations of multiple key dust variables such as dust aerosol optical depth (DAOD), surface particulate matter (PM) concentration, and deposition flux. Our scheme's dust also correlates strongly with various meteorological and land surface variables, implying higher sensitivity of dust to future climate change than other schemes' dust. These findings highlight the importance of including additional aeolian processes for improving the performance of ESM aerosol simulations and potentially enhancing model assessments of how dust impacts climate and ecosystem changes. 
    more » « less
  4. Abstract. We present the dust module in the Multiscale Online Non-hydrostatic AtmospheRe CHemistry model (MONARCH) version 2.0, a chemical weather prediction system that can be used for regional and global modeling at a range of resolutions. The representations of dust processes in MONARCH were upgraded with a focus on dust emission (emission parameterizations, entrainment thresholds, considerations of soil moisture and surface cover), lower boundary conditions (roughness, potential dust sources), and dust–radiation interactions. MONARCH now allows modeling of global and regional mineral dust cycles using fundamentally different paradigms, ranging from strongly simplified to physics-based parameterizations. We present a detailed description of these updates along with four global benchmark simulations, which use conceptually different dust emission parameterizations, and we evaluate the simulations against observations of dust optical depth. We determine key dust parameters, such as global annual emission/deposition flux, dust loading, dust optical depth, mass-extinction efficiency, single-scattering albedo, and direct radiative effects. For dust-particle diameters up to 20 µm, the total annual dust emission and deposition fluxes obtained with our four experiments range between about 3500 and 6000 Tg, which largely depend upon differences in the emitted size distribution. Considering ellipsoidal particle shapes and dust refractive indices that account for size-resolved mineralogy, we estimate the global total (longwave and shortwave) dust direct radiative effect (DRE) at the surface to range between about −0.90 and −0.63 W m−2 and at the top of the atmosphere between −0.20 and −0.28 W m−2. Our evaluation demonstrates that MONARCH is able to reproduce key features of the spatiotemporal variability of the global dust cycle with important and insightful differences between the different configurations. 
    more » « less
  5. Abstract. Nitrate (NO3-) aerosol is projected to increase dramatically in the coming decades and may become the dominant inorganic particle species. This is due to the continued strong decrease in SO2 emissions, which is not accompanied by a corresponding decrease in NOx and especially NH3 emissions. Thus, the radiative effect (RE) of NO3- aerosol may become more important than that of SO42- aerosol in the future. The physicochemical interactions of mineral dust particles with gas and aerosol tracers play an important role in influencing the overall RE of dust and non-dust aerosols but can be a major source of uncertainty due to their lack of representation in many global climate models. Therefore, this study investigates how and to what extent dust affects the current global NO3- aerosol radiative effect through both radiation (REari) and cloud interactions (REaci) at the top of the atmosphere (TOA). For this purpose, multiyear simulations nudged towards the observed atmospheric circulation were performed with the global atmospheric chemistry and climate model EMAC, while the thermodynamics of the interactions between inorganic aerosols and mineral dust were simulated with the thermodynamic equilibrium model ISORROPIA-lite. The emission flux of the mineral cations Na+, Ca2+, K+, and Mg2+ is calculated as a fraction of the total aeolian dust emission based on the unique chemical composition of the major deserts worldwide. Our results reveal positive and negative shortwave and longwave radiative effects in different regions of the world via aerosol–radiation interactions and cloud adjustments. Overall, the NO3- aerosol direct effect contributes a global cooling of −0.11 W m−2, driven by fine-mode particle cooling at short wavelengths. Regarding the indirect effect, it is noteworthy that NO3- aerosol exerts a global mean warming of +0.17 W m−2. While the presence of NO3- aerosol enhances the ability of mineral dust particles to act as cloud condensation nuclei (CCN), it simultaneously inhibits the formation of cloud droplets from the smaller anthropogenic particles. This is due to the coagulation of fine anthropogenic CCN particles with the larger nitrate-coated mineral dust particles, which leads to a reduction in total aerosol number concentration. This mechanism results in an overall reduced cloud albedo effect and is thus attributed as warming. 
    more » « less