skip to main content

Title: Phase Decoherence Within Intense Chorus Wave Packets Constrains the Efficiency of Nonlinear Resonant Electron Acceleration

Electron resonant interaction with whistler mode waves is traditionally considered as one of the main drivers of radiation belt dynamics. The two main theoretical concepts available for its description are quasi‐linear theory of electron scattering by low‐amplitude waves and nonlinear theory of electron resonant trapping and phase bunching by intense waves. Both concepts successfully describe some aspects of wave‐particle interactions but predict significantly different timescales of relativistic electron acceleration. In this study, we investigate effects that can reduce the efficiency of nonlinear interactions and bridge the gap between the predictions of these two types of models. We examine the effects of random wave phase and frequency variations observed inside whistler mode wave packets on nonlinear interactions. Our results show that phase coherence and frequency fluctuations should be taken into account to accurately model electron nonlinear resonant acceleration and that, along with wave amplitude modulation, they may reduce acceleration rates to realistic, moderate levels.

more » « less
Award ID(s):
1914594 2026375
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The electron resonant interaction with whistler‐mode waves is characterized by transport in pitch angle–energy space. We calculate electron diffusion and advection coefficients (a simplified characterization of transport) for a large range of electron pitch angle and energy using test particle simulations. Nonlinear effects are analyzed by comparing the diffusion coefficients using test particle simulations and quasilinear theory, and by evaluating the advection rates. Dependence of nonlinear effects on the wave amplitude and bandwidth of whistler‐mode waves is evaluated by running test particle simulations with a broad range of wave amplitude and bandwidth. The maximum amplitudes where the quasilinear approach is valid are found to increase with increasing bandwidth, from 50 pT for narrowband waves to 300 pT for broadband waves atL‐shell of 6. Moreover, interactions between intense whistler‐mode waves and small pitch angle electrons lead to large positive advection, which limits the applicability of diffusion‐based models. This study demonstrates the parameter range of the applicability of quasilinear theory and diffusion model for different wave amplitudes and frequency bandwidths of whistler‐mode waves, which is critical for evaluating the effects of whistler‐mode waves on energetic electrons in the Earth’s magnetosphere.

    more » « less
  2. Abstract

    In this study, using Van Allen Probes observations we identify 81 events of electron flux bursts with butterfly pitch angle distributions for tens of keV electrons with close correlations with chorus wave bursts in the Earth's magnetosphere. We use the high‐rate electron flux data from Magnetic Electron Ion Spectrometer available during 2013–2019 and the simultaneous whistler‐mode wave measurements from Electric and Magnetic Field Instrument Suite and Integrated Science to identify the correlated events. The events are categorized into 67 upper‐band chorus (0.5–0.8fce) dominated events and 14 other events where lower‐band chorus (0.05–0.5fce) has modest or strong amplitudes (fcerepresents electron cyclotron frequency). Each electron flux burst correlated with chorus has a short timescale of ∼1 min or less, suggesting potential nonlinear effects. The statistical distribution of selected electron burst events tends to occur in the post‐midnight sector atL > 5 under disturbed geomagnetic conditions, and is associated with chorus waves with relatively strong magnetic wave amplitude and small wave normal angle. The frequency dependence of the electron flux peaks agrees with the cyclotron resonant condition, indicating the effects of chorus‐induced electron acceleration. Our study provides new insights into understanding the rapid nonlinear interactions between chorus and energetic electrons.

    more » « less
  3. Abstract

    Energetic electron losses in the Earth's inner magnetosphere are dominated by outward radial diffusion and scattering into the atmosphere by various electromagnetic waves. The two most important wave modes responsible for electron scattering are electromagnetic ion cyclotron (EMIC) waves and whistler‐mode waves (whistler waves) that, acting together, can provide rapid electron losses over a wide energy range from few keV to few MeV. Wave‐particle resonant interaction resulting in electron scattering is well described by quasi‐linear diffusion theory using the cold plasma dispersion, whereas the effects of nonlinear resonances and hot plasma dispersion are less well understood. This study aims to examine these effects and estimate their significance for a particular event during which both wave modes are quasi‐periodically modulated by ultra‐low‐frequency (ULF) compressional waves. Such modulation of EMIC and whistler wave amplitudes provides a unique opportunity to compare nonlinear resonant scattering (important for the most intense waves) with quasi‐linear diffusion (dominant for low‐intensity waves). The same modulation of plasma properties allows better characterization of hot plasma effects on the EMIC wave dispersion. Although hot plasma effects significantly increase the minimum resonant energy,Emin, for the most intense EMIC waves, such effects become negligible for the higher frequency part of the hydrogen‐band EMIC wave spectrum. Nonlinear phase trapping of 300–500 keV electrons through resonances with whistler waves may accelerate and make them resonant with EMIC waves that, in turn, quickly scatter those electrons into the loss‐cone. Our results highlight the importance of nonlinear effects for simulations of energetic electron fluxes in the inner magnetosphere.

    more » « less
  4. Abstract

    Whistler mode chorus waves are responsible for electron acceleration in Earth's radiation belts. It is unclear, however, whether the observed acceleration is still well described by quasi‐linear theory, or if this acceleration is due to intense waves that require nonlinear treatment. Here, we perform a comprehensive statistical analysis of intense lower‐band chorus wave packets to investigate the relationships between wave frequency variations, packet length, and wave amplitude, and their temporal variability. We find that 15% of the wave power is carried by long packets, with low frequency sweep rates (linear trend in time) that agree with the nonlinear theory of chorus wave growth. Eighty‐five percent of the wave power, however, comes from short packets with large frequency variations around the linear trend. The kappa‐like probability distribution of these variations is consistent with random superposition of different waves that could result in a destruction of nonlinear resonant interaction.

    more » « less
  5. Abstract

    Electron losses from the outer radiation belt are typically attributed to resonant electron scattering by whistler‐mode waves. Although the quasi‐linear diffusive regime of such scattering is well understood, the observed waves are often quite intense and in the nonlinear regime of resonant wave‐particle interaction. Such nonlinear resonant interactions are still being actively studied due to their potential for driving fast precipitation. However, direct observations of nonlinear resonance of whistler‐mode waves with electron distributions are scarce. Here, we present evidence for such resonance with high‐resolution electron energy and pitch angle spectra acquired at low‐altitudes by the dual Electron Losses and Fields INvestgation (ELFIN) CubeSats combined with conjugate measurements of equatorial plasma parameters, wave properties, and electron energy spectra by the Time History of Events and Macroscale Interactions during Substorms and Magnetospheric MultiScale missions. ELFIN has obtained numerous conjunction events exhibiting whistler wave driven precipitation; in this study, we present two such events which epitomize signatures of nonlinear resonant scattering. A test particle simulation of electron interactions with intense whistler‐mode waves prescribed at the equator is employed to directly compare modeled precipitation spectra with ELFIN observations. We show that the observed precipitating spectra match expectations to within observational uncertainties of wave amplitude for reasonable assumptions of wave power distribution along the magnetic field line. These results indicate the importance of nonlinear resonant effects when describing intense precipitation patterns of energetic electrons and open the possibility of remotely investigating equatorial wave properties using just properties of precipitation energy and pitch angle spectra.

    more » « less